已知函數(shù),①求函數(shù)的單調(diào)區(qū)間;②求函數(shù)的極值,③當(dāng)時(shí),求函數(shù)的最大值與最小值.
見解析.
【解析】根據(jù)求導(dǎo)公式和求導(dǎo)法則求出函數(shù)的導(dǎo)數(shù),利用函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,解不等式得函數(shù)的單調(diào)增區(qū)間,解不等式<0得函數(shù)的單調(diào)減區(qū)間,然后列表求出其極值與最值.
解:①由,得,函數(shù)單調(diào)遞增;同理,或函數(shù)單調(diào)遞減.
②由①得下表:
— |
0 |
+ |
0 |
— |
|
單調(diào)遞減 |
極小值f(-2) |
單調(diào)遞增 |
極大值f(2) |
單調(diào)遞減 |
極小值=-16,極大值=16.
③結(jié)合①②及,得下表:
|
— |
0 |
+ |
|
|
端點(diǎn)函數(shù)值 f(-3)=-9 |
單調(diào) 遞減 |
極小值f(-2)=-16 |
單調(diào) 遞增 |
端點(diǎn)函數(shù)值 f(1)=11 |
比較端點(diǎn)函數(shù)及極值點(diǎn)的函數(shù)值,得極小值=f(-2)=-16,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
1 |
3 |
| ||
cosx+2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆浙江桐鄉(xiāng)高級(jí)中學(xué)高二第二學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分15分)
已知函數(shù)
(Ⅰ)求函數(shù)的極值;
(Ⅱ)對于曲線上的不同兩點(diǎn),如果存在曲線上的點(diǎn),且,使得曲線在點(diǎn)處的切線∥,則稱為弦的伴隨切線。特別地,當(dāng),時(shí),又稱為的λ——伴隨切線。
(ⅰ)求證:曲線的任意一條弦均有伴隨切線,并且伴隨切線是唯一的;
(ⅱ)是否存在曲線C,使得曲線C的任意一條弦均有伴隨切線?若存在,給出一條這樣的曲線 ,并證明你的結(jié)論; 若不存在 ,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省中學(xué)高三2月月考數(shù)學(xué)文卷 題型:解答題
.(本小題滿分14分)
已知函數(shù)
(Ⅰ)求函數(shù)的定義域,并證明在定義域上是奇函數(shù);
(Ⅱ)若恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)當(dāng)時(shí),試比較與的大小關(guān)系
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省廣州東莞五校高三第二次聯(lián)考文科數(shù)學(xué)卷 題型:解答題
(本小題滿分14分)已知函數(shù)
(Ⅰ)求函數(shù)的定義域,并證明在定義域上是奇函數(shù);
(Ⅱ)若恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)當(dāng)時(shí),試比較與的大小關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)
(Ⅰ)求函數(shù)的單調(diào)遞減區(qū)間;
(Ⅱ)將函數(shù)的圖像按向量a=(m,0)平移,使得平移后的圖像關(guān)于直線 對稱,求m的最小正值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com