【題目】,,…,是1,2,…,的一個排列,把排在的左邊且比小的數(shù)的個數(shù)稱為的順序數(shù),如在排列6,4,5,3,2,1中,5的順序數(shù)為1,3的順序數(shù)為0,則在1至8這8個數(shù)的排列中,8的順序數(shù)為2,7的順序數(shù)為3,5的順序數(shù)為3的不同排列的種數(shù)為

A. 96B. 144C. 192D. 240

【答案】B

【解析】

由題意知8的順序數(shù)為2,則8必是排第三位,7的順序數(shù)為3,則7必是第5位,那么還得考慮5和6,分為兩種,利用分類計數(shù)原理,即可求解.

由題意知8的順序數(shù)為2,則8必是排第三位,7的順序數(shù)為3,則7必是第5位,那么還得考慮5和6,

分為兩種,(1)當5在6的前面,那么5只能排在第6位,6可以是第7或第8位,其它四個任排,有種;

(2)當6在5前面,5在第7位,有種.

所以滿足題意的排列總數(shù)為種.

故選B.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】1)若函數(shù)f(x)ax2bx3ab是偶函數(shù),定義域為[a1,2a],則a________b________;

2)已知函數(shù)f(x)ax22x是奇函數(shù),則實數(shù)a________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某個體經營者把開始六個月試銷A、B兩種商品的逐月投資與所獲純利潤列成下表:

投資A商品金額(萬元)

1

2

3

4

5

6

獲純利潤(萬元)

0.65

1.39

1.85

2

1.84

1.40

投資B商品金額(萬元)

1

2

3

4

5

6

獲純利潤(萬元)

0.25

0.49

0.76

1

1.26

1.51

該經營者準備下月投入12萬元經營這兩種產品,但不知投入A、B兩種商品各多少才最合算請你幫助制定一下資金投入方案,使得該經營者能獲得最大利潤,并按你的方案求出該經營者下月可獲得的最大利潤(結果保留兩個有效數(shù)字)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在矩形中,,,的中點,將沿向上折起,使平面平面

(Ⅰ)求證:;

(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列隨機事件:

①某射手射擊一次,可能命中環(huán),環(huán),環(huán),,環(huán);

②一個小組有男生人,女生人,從中任選人進行活動匯報;

③一只使用中的燈泡壽命長短;

④拋出一枚質地均勻的硬幣,觀察其出現(xiàn)正面或反面的情況;

⑤中秋節(jié)前夕,某市有關部門調查轄區(qū)內某品牌的月餅質量,給該品牌月餅評“優(yōu)”或“差”.

這些事件中,屬于古典概型的是________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,一塊黃銅板上插著三根寶石針,在其中一根針上從下到上穿好由大到小的若干金片.若按照下面的法則移動這些金片:每次只能移動一片金片;每次移動的金片必須套在某根針上;大片不能疊在小片上面.設移完片金片總共需要的次數(shù)為,可推得.求移動次數(shù)的程序框圖模型如圖所示,則輸出的結果是( )

A. 1022 B. 1023 C. 1024 D. 1025

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在古代,直角三角形中較短的直角邊稱為“勾”,較長的直角邊稱為“股”,斜邊稱為“弦”.三國時期吳國數(shù)學家趙爽用“弦圖”( 如圖) 證明了勾股定理,證明方法敘述為:“按弦圖,又可以勾股相乘為朱實二,倍之為朱實四,以勾股之差自相乘為中黃實,加差實,亦成弦實.”這里的“實”可以理解為面積.這個證明過程體現(xiàn)的是這樣一個等量關系:“兩條直角邊的乘積是兩個全等直角三角形的面積的和(朱實二 ),4個全等的直角三角形的面積的和(朱實四) 加上中間小正方形的面積(黃實) 等于大正方形的面積(弦實)”. 若弦圖中“弦實”為16,“朱實一”為,現(xiàn)隨機向弦圖內投入一粒黃豆(大小忽略不計),則其落入小正方形內的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設甲、乙、丙三個乒乓球協(xié)會分別選派3,1,2名運動員參加某次比賽,甲協(xié)會運動員編號分別為,,乙協(xié)會編號為,丙協(xié)會編號分別為,,若從這6名運動員中隨機抽取2名參加雙打比賽.

(1)用所給編號列出所有可能抽取的結果;

(2)求丙協(xié)會至少有一名運動員參加雙打比賽的概率;

(3)求參加雙打比賽的兩名運動員來自同一協(xié)會的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐,底面為菱形, 上的點,過的平面分別交于點,且平面

(1)證明: ;

(2)當的中點, , 與平面所成的角為,求平面AMHN與平面ABCD所成銳二面角的余弦值.

查看答案和解析>>

同步練習冊答案