已知拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)為F(0,1).
(Ⅰ)求拋物線C的方程;
(Ⅱ)在拋物線C上是否存在點(diǎn)P,使得過點(diǎn)P的直線交C于另一點(diǎn)Q,滿足PF⊥QF,且PQ與C在點(diǎn)P處的切線垂直?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

【答案】分析:(Ⅰ)設(shè)拋物線C的方程是x2=ay,根據(jù)焦點(diǎn)為F的坐標(biāo)求得a,進(jìn)而可得拋物線的方程.
(Ⅱ)設(shè)P(x1,y1),Q(x2,y2),進(jìn)而可得拋物線C在點(diǎn)P處的切線方程和直線PQ的方程,代入拋物線方程根據(jù)韋達(dá)定理,可求得x1+x2和x1x2的表達(dá)式,根據(jù)×求得y1=4及點(diǎn)P的坐標(biāo).
解答:解:(Ⅰ)設(shè)拋物線C的方程是x2=ay,
,
即a=4.
故所求拋物線C的方程為x2=4y.
(Ⅱ)解:設(shè)P(x1,y1),Q(x2,y2),
則拋物線C在點(diǎn)P處的切線方程是
直線PQ的方程是
將上式代入拋物線C的方程,得
故x1+x2=,x1x2=-8-4y1,
所以x2=-x1,y2=+y1+4.
=(x1,y1-1),=(x2,y2-1),×=x1x2+(y1-1)(y2-1)
=x1x2+y1y2-(y1+y2)+1
=-4(2+y1)+y1+y1+4)-(+2y1+4)+1
=y12-2y1--7
=(y12+2y1+1)-4(+y1+2)
=(y1+1)2-
==0,
故y1=4,此時,點(diǎn)P的坐標(biāo)是(±4,4).
經(jīng)檢驗,符合題意.
所以,滿足條件的點(diǎn)P存在,其坐標(biāo)為P(±4,4).
點(diǎn)評:本題主要考查拋物線的標(biāo)準(zhǔn)方程以及拋物線與直線的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)為F(0,1).
(Ⅰ)求拋物線C的方程;
(Ⅱ)在拋物線C上是否存在點(diǎn)P,使得過點(diǎn)P的直線交C于另一點(diǎn)Q,滿足PF⊥QF,且PQ與C在點(diǎn)P處的切線垂直?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•溫州一模)已知拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)為F(0,1),且過點(diǎn)A(2,t),
(I)求t的值;
(II)若點(diǎn)P、Q是拋物線C上兩動點(diǎn),且直線AP與AQ的斜率互為相反數(shù),試問直線PQ的斜率是否為定值,若是,求出這個值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)為F(
1
2
,0)
.(1)求拋物線C的方程; (2)已知直線y=k(x+
1
2
)
與拋物線C交于A、B 兩點(diǎn),且|FA|=2|FB|,求k 的值; (3)設(shè)點(diǎn)P 是拋物線C上的動點(diǎn),點(diǎn)R、N 在y 軸上,圓(x-1)2+y2=1 內(nèi)切于△PRN,求△PRN 的面積最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)F(1,0).
(Ⅰ)求拋物線C的方程;
(Ⅱ)命題:“過拋物線C的焦點(diǎn)F作與x軸不垂直的任意直線l交拋物線于A、B兩點(diǎn),線段AB的垂直平分線交x軸于點(diǎn)M,則
|AB||FM|
為定值,且定值是2”.判斷它是真命題還是假命題,并說明理;
(Ⅲ)試推廣(Ⅱ)中的命題,寫出關(guān)于拋物線的一般性命題(注,不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn),以坐標(biāo)軸為對稱軸,且焦點(diǎn)F(2,0).
(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)直線l過焦點(diǎn)F與拋物線C相交與M,N兩點(diǎn),且|MN|=16,求直線l的傾斜角.

查看答案和解析>>

同步練習(xí)冊答案