等差數(shù)列的前4項和為26,最后4項和為110,且所有項之和為187,則此數(shù)列共有
 
項.
考點:等差數(shù)列的性質(zhì)
專題:計算題,等差數(shù)列與等比數(shù)列
分析:由等差數(shù)列的性質(zhì)可得,首項和末項的和a1+an=
26+110
4
=34,再根據(jù)187=
n
2
(a1+an),解得n的值.
解答: 解:由等差數(shù)列的性質(zhì)可得 首項和末項的和a1+an=
26+110
4
=34,
根據(jù)所有項之和是187=
n
2
(a1+an),
解得n=11,
故答案為:11.
點評:本題考查等差數(shù)列的定義和性質(zhì),前n項和公式的應(yīng)用,求出a1+an的值,是解題的難點和關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a(x2-x-1)
ex
(x∈R),a為正數(shù).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對任意x1,x2∈[0,4]均有|f(x1)-f(x2)|<1成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax-1n(1+x2)(a>0).
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)證明:當x>0時,1n(1+x2)<x;
(Ⅲ)證明:(1+
1
24
)(1+
1
34
)…(1+
1
n4
)<e(n∈N*,n≥2,其中無理數(shù)e=2.71828…)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列幾個命題:
①方程x2+(a-3)x+a=0的有一個正實根,一個負實根,則a<0.
②函數(shù)y=
x2-1
+
1-x2
是偶函數(shù),但不是奇函數(shù).
③函數(shù)f(x)的值域是[-2,2],則函數(shù)f(x+1)的值域為[-3,1].
④一條曲線y=|3-x2|和直線y=a(a∈R)的公共點個數(shù)是m,則m的值不可能是1.
⑤函數(shù)f(x)=lg(5+4x-x2)的單調(diào)遞增區(qū)間為(-∞,2]
其中正確的有
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=4x2-kx-8在[2,10]上具有單調(diào)性,則實數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知cosα=-
5
13
,α為第二象限角,則tanα=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

巳知某幾何體的三視圖如圖所示,其主視圖和左視圖都是邊長為2的正方形,俯視圖是一個圓,則該幾何體的體積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a≥0,M為
a+2
-
a+1
a+1
-
a
中較大的一個,則M=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“p∨q為真命題”是“?p為假命題”成立的
 
條件.

查看答案和解析>>

同步練習冊答案