已知向量
a
=(-1,2),
b
=(10,5),則
a
b
( 。
A、垂直B、平行
C、相交但不垂直D、無法判斷
考點(diǎn):平面向量的坐標(biāo)運(yùn)算
專題:平面向量及應(yīng)用
分析:利用
a
b
=0?
a
b
.即可得出.
解答: 解:∵
a
b
=-10+10=0,
a
b

故選:A.
點(diǎn)評(píng):本題考查了
a
b
=0?
a
b
.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某高二學(xué)生在參加歷史、地理反向會(huì)考中,兩門科目考試成績互不影響.記X為“該學(xué)生取得優(yōu)秀的科目數(shù)”,其分布列如表所示,則D(X)的最大值是(  )
X 0 1 2
P a b
1
2
A、
1
2
B、
3
2
C、1
D、
5
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點(diǎn)A(-2,3),B(3,1),若直線ax+y+2=0與線段AB沒有交點(diǎn),則a的取值范圍是(  )
A、(-∞,-
5
2
]∪[1,+∞)
B、(-1,
5
2
C、[-
5
2
,1]
D、(-∞,-1]∪[
5
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,則輸出T的值為( 。
A、18B、24C、30D、35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在(
x
+
1
x2
n的二項(xiàng)展開式中,第三項(xiàng)的系數(shù)與第二項(xiàng)的系數(shù)的差為20,則展開式中含
1
x
的項(xiàng)的系數(shù)為(  )
A、8B、28C、56D、70

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ax2+x+1有極大值的充要條件是( 。
A、a<0B、a≥0
C、a>0D、a≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

y=2cosx的圖象經(jīng)過怎樣的變換能變成函數(shù)y=2cos(2x+
π
3
)的圖象( 。
A、向左平移
π
3
個(gè)單位長度,再將圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變
B、向左平移
π
6
個(gè)單位長度,再將圖象上各點(diǎn)的橫坐標(biāo)縮短到原來的
1
2
,縱坐標(biāo)不變
C、將圖象上各點(diǎn)的橫坐標(biāo)縮短到原來的
1
2
,縱坐標(biāo)不變,再向左平移
π
6
個(gè)單位長度
D、將圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再向左平移
π
6
個(gè)單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:2x+y+2=0及圓C:x2+y2=2y.
(1)求垂直于直線l且與圓C相切的直線l′的方程;
(2)過直線l上的動(dòng)點(diǎn)P作圓C的一條切線,設(shè)切點(diǎn)為T,求PT的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2sin(2x+
π
6
)+a+1(a為常數(shù)),若f(x)在[-
π
6
π
6
]上最大值與最小值之和為3,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案