設(shè)函數(shù)f(x)=|x2-2x-3|,x∈R.
(1)在區(qū)間[-2,4]上畫出函數(shù)f(x)的圖象;
(2)寫出該函數(shù)在R上的單調(diào)區(qū)間.
考點:二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)作圖如右圖,
(2)由函數(shù)的圖象直接寫出增區(qū)間:[-1,1],[3,+∞),減區(qū)間:(-∞,-1],[1,3].
解答: 解:解:(1)作圖如右圖,
(2)由函數(shù)的圖象可知,
增區(qū)間:[-1,1],[3,+∞),
減區(qū)間:(-∞,-1],[1,3].
點評:本題考查了學生的作圖能力及數(shù)形結(jié)合的思想運用,屬于中檔題
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

求證:對任意自然數(shù)n,總有
1
2
+
3
4
+
5
8
+…+
2n-1
2n
<3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,設(shè)四邊形ACBD是⊙O的內(nèi)接正方形,P是⊙O上的任一點,求證:|
PA
|2+|
PB
|2+|
PC
|2+|
PD
|2的值與點P的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正項數(shù)列{an}的前n項和為Sn,對?n∈N*有2Sn=an2+an
(1)求數(shù)列{an}的通項公式;
(2)令bn=
1
an
an+1
+an+1
an
,設(shè){bn}的前n項和為Tn,求T1,T2,T3,…,T100中有理數(shù)的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某市建一過街橋,兩端的橋墩相距m米,此工程只需建兩端橋墩之間的橋面和橋墩(包括兩端的橋墩),經(jīng)測算,一個橋墩的費用為32萬元,相鄰兩個橋墩之間的距離均為x,且相鄰兩個橋墩之間的橋面工程費用為(1+
x
)x萬元,假設(shè)橋墩等距離分布,所有橋墩都視為點,且不考慮其它因素,記余下工程的費用為y萬元.
(1)試寫出y關(guān)于x的函數(shù)關(guān)系式;
(2)當m=80米時,需要新建多少個橋墩才能使y最。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=x2+4x+5的單調(diào)遞增區(qū)間是( 。
A、(-∞,-2]
B、[-2,+∞)
C、[-5,-2]
D、[-2,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,a1=1,an+1=2an+2n
(1)設(shè)bn=
an
2n-1
,證明:數(shù)列{bn}是等差數(shù)列.
(2)求數(shù)列{an}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

根據(jù)下列條件,求(0,2π)內(nèi)的角x:
(1)sinx=-
3
2
;
(2)sinx=-1;
(3)cosx=0;
(4)tanx=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直三棱柱ABC-A1B1C1中,AC=AB=AA1,且異面直線AC1與A1B所成的角為60°,則∠CAB等于
 

查看答案和解析>>

同步練習冊答案