銳角△ABC的兩個(gè)頂點(diǎn)為A(-1,2),B(2,-2),BC=8.若
3
sinB=cosB+1
(Ⅰ)求角B的大小
(Ⅱ)求邊AC的長(zhǎng).
考點(diǎn):正弦定理,余弦定理
專(zhuān)題:解三角形
分析:(1)利用同角三角函數(shù)關(guān)系式和已知等式聯(lián)立方程可求得sinB的值,進(jìn)而求得B.
(2)利用兩點(diǎn)間距離公式求得AB的長(zhǎng),進(jìn)而利用余弦定理求得AC的長(zhǎng).
解答: 解:(1)依題意
3
sinB=cosB+1
sin2B+cos2B=1
,求得sinB=
3
2
,
∵0<B<
π
2
,
∴B=
π
3

(2)|AB|=
9+16
=5,
∴|AC|=
|BC|2+|AB|2-2|BC|•|AB|•cosB
=
64+25-2×5×8×
1
2
=7.
點(diǎn)評(píng):本題主要考查了余弦定理的應(yīng)用,兩點(diǎn)距離公式等知識(shí).考查了基礎(chǔ)知識(shí)的綜合運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某市為調(diào)研學(xué)校師生的環(huán)境保護(hù)意識(shí),決定在本市所有學(xué)校中隨機(jī)抽取60所進(jìn)行環(huán)境綜合考評(píng)成績(jī)達(dá)到80分以上(含80分)為達(dá)標(biāo).60所學(xué)校的考評(píng)結(jié)果頻率分布直方圖如圖所示(其分組區(qū)間為[50,60),[60,70),[70,80),[80,90),[90,100]).
(Ⅰ)試根據(jù)樣本估汁全市學(xué)校環(huán)境綜合考評(píng)的達(dá)標(biāo)率;
(Ⅱ)若考評(píng)成績(jī)?cè)赱90.100]內(nèi)為優(yōu)秀.且甲乙兩所學(xué)?荚u(píng)結(jié)果均為優(yōu)秀從考評(píng)結(jié)果為優(yōu)秀的學(xué)校中隨機(jī)地抽取兩所學(xué)校作經(jīng)驗(yàn)交流報(bào)告,求甲乙兩所學(xué)校至少有所被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a(x+
1
x
)+2lnx,g(x)=x2
(Ⅰ)若a>0且a≠2,直線l與函數(shù)f(x)和g(x)的圖象切于同一點(diǎn),求切線l的方程;
(Ⅱ)若?x1[e-1,e],?x2[-1,2],使不等式f(x1)>g(x2)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓O的內(nèi)接△ABC中,D為BC上一點(diǎn),且△ADC為正三角形,點(diǎn)E為BC的延長(zhǎng)線上一點(diǎn),AE為圓O的切線,求證:CD2=BD•EC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(α)=
sin2(π-α)•cos(2π-α)•tan(-π+α)
sin(-π+α)•tan(-α+3π)

(1)化簡(jiǎn)f(α);
(2)若α=-
31π
3
,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z=lg(m2-2m-2)+(m2+3m+2)i.
(1)當(dāng)z為純虛數(shù)時(shí),求實(shí)數(shù)m的值;
(2)當(dāng)z為實(shí)數(shù)時(shí),求實(shí)數(shù)m的值;
(3)當(dāng)復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于第二象限時(shí),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x-
a
x
(a>0),g(x)=2lnx+bx,且直線y=2x-2與曲線y=g(x)相切.
(Ⅰ)若對(duì)[1,+∞)內(nèi)的一切實(shí)數(shù)x,不等式f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅱ)(。┊(dāng)a=1時(shí),求最大的正整數(shù)k,使得任意k個(gè)實(shí)數(shù)x1,x2,…xk∈[e,3](e=2.71828…是自然對(duì)數(shù)的底數(shù))都有f(x1)+f(x2)+…+f(xk-1)≤16g(xk)成立;
(ⅱ)求證:
1•4
4•12-1
+
2•4
4•22-1
+…+
n•4
4•n2-1
>ln(2n+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x∈R|ax2+2x+1=0,a∈R},若A中元素至多只有一個(gè),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)某種動(dòng)物由出生算起活到20歲的概率為0.8,活到25歲的概率為0.4,現(xiàn)在一個(gè)20歲的這種動(dòng)物,它能活到25歲的概率是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案