若兩條直線y=x+2a,y=2x+a的交點P在圓(x-1)2+(y-1)2=4的內(nèi)部,則實數(shù)a的取值范圍是
 
分析:先求出兩條直線的交點坐標,利用交點到圓心的距離小于半徑列出不等式,解出實數(shù)a的取值范圍.
解答:解:∵兩條直線y=x+2a,y=2x+a的交點P在圓(x-1)2+(y-1)2=4的內(nèi)部,
兩條直線y=x+2a,y=2x+a的交點坐標為(a,3a),∴(a-1)2+(3a-1)2<4,
∴-
1
5
<a<1,
故答案為:-
1
5
<a<1.
點評:本題考查點與圓的位置關系,點在圓內(nèi)等價于點到圓心的距離小于圓的半徑.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)在直線y=x-2上是否存在點P,使得經(jīng)過點P能作出拋物線y=
12
x2
的兩條互相垂直的切線?若存在,求點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓中心在原點,焦點在y軸上,離心率為
3
3
,以原點為圓心,橢圓短半軸長為半徑的圓與直線y=x+2相切.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設點F是橢圓在y軸正半軸上的一個焦點,點A,B是拋物線x2=4y上的兩個動點,且滿足
AF
FB
 (λ>0)
,過點A,B分別作拋物線的兩條切線,設兩切線的交點為M,試推斷
FM
AB
是否為定值?若是,求出這個定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1
的焦點為F1(-c,0)、F2(c,0)(c>0),焦點F2到漸近線的距離為
3
,兩條準線之間的距離為1.
(1)求此雙曲線的方程;
(2)若直線y=x+2與雙曲線分別相交于A、B兩點,求線段AB的長;
(3)過雙曲線焦點F2且與(2)中AB平行的直線與雙曲線分別相交于C、D兩點,若
AB
+
AD
=
AC
,求
1
2
(
OA
OD
)tan<
OA
,
OD
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

若兩條直線y=x+2a,y=2x+a的交點P在圓(x-1)2+(y-1)2=4的內(nèi)部,則實數(shù)a的取值范圍是 ________.

查看答案和解析>>

同步練習冊答案