在數(shù)列{an}中,n∈N*,若
an+2-an+1
an+1-an
=k
(k為常數(shù)),則稱{an}為“等差比數(shù)列”.下列是對(duì)“等差比數(shù)列”的判斷:
①k不可能為0   
②等差數(shù)列一定是等差比數(shù)列
③等比數(shù)列一定是等差比數(shù)列  
④等差比數(shù)列中可以有無(wú)數(shù)項(xiàng)為0
其中正確的判斷是( 。
A、①②B、②③C、③④D、①④
分析:當(dāng)k=0時(shí),則數(shù)列成了常數(shù)列,則分母也為0,進(jìn)而推斷出k不可能為0,判斷出①正確.當(dāng)?shù)炔顢?shù)列和等比數(shù)列為常數(shù)列時(shí)不滿足題設(shè)的條件,排除②③;把④通項(xiàng)公式代入題設(shè)中,滿足條件,進(jìn)而推斷④正確.
解答:解:若公差比為0,則an+2-an+1=0,故{an}為常數(shù)列,從而的分母為0,無(wú)意義,所以公差比一定不為零,故①正確.
當(dāng)?shù)炔顢?shù)列為常數(shù)列時(shí)不滿足題設(shè)的條件,故②不正確.
當(dāng)?shù)缺葦?shù)列為常數(shù)列時(shí),不滿足題設(shè),故③不正確.
對(duì)于④等差比數(shù)列中可以有無(wú)數(shù)項(xiàng)為0.
故選D
點(diǎn)評(píng):本題以新定義公式為載體,考查了等比數(shù)列的通項(xiàng)公式,前n項(xiàng)和公式的靈活應(yīng)用;也考查了一定的計(jì)算能力,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:咸安區(qū)模擬 題型:單選題

在數(shù)列{an}中,n∈N*,若
an+2-an+1
an+1-an
=k
(k為常數(shù)),則稱{an}為“等差比數(shù)列”.下列是對(duì)“等差比數(shù)列”的判斷:
①k不可能為0   
②等差數(shù)列一定是等差比數(shù)列
③等比數(shù)列一定是等差比數(shù)列  
④等差比數(shù)列中可以有無(wú)數(shù)項(xiàng)為0
其中正確的判斷是( 。
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省紹興一中分校高三(上)10月月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

在數(shù)列{an}中,n∈N*,若(k為常數(shù)),則稱{an}為“等差比數(shù)列”.下列是對(duì)“等差比數(shù)列”的判斷:
①k不可能為0   
②等差數(shù)列一定是等差比數(shù)列
③等比數(shù)列一定是等差比數(shù)列  
④等差比數(shù)列中可以有無(wú)數(shù)項(xiàng)為0
其中正確的判斷是( )
A.①②
B.②③
C.③④
D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年湖北省襄樊四中高考數(shù)學(xué)模擬試卷(解析版) 題型:選擇題

在數(shù)列{an}中,n∈N*,若(k為常數(shù)),則稱{an}為“等差比數(shù)列”.下列是對(duì)“等差比數(shù)列”的判斷:
①k不可能為0   
②等差數(shù)列一定是等差比數(shù)列
③等比數(shù)列一定是等差比數(shù)列  
④等差比數(shù)列中可以有無(wú)數(shù)項(xiàng)為0
其中正確的判斷是( )
A.①②
B.②③
C.③④
D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年廣東省廣州市仲元中學(xué)高三數(shù)學(xué)專題訓(xùn)練:數(shù)列(解析版) 題型:選擇題

在數(shù)列{an}中,n∈N*,若(k為常數(shù)),則稱{an}為“等差比數(shù)列”.下列是對(duì)“等差比數(shù)列”的判斷:
①k不可能為0   
②等差數(shù)列一定是等差比數(shù)列
③等比數(shù)列一定是等差比數(shù)列  
④等差比數(shù)列中可以有無(wú)數(shù)項(xiàng)為0
其中正確的判斷是( )
A.①②
B.②③
C.③④
D.①④

查看答案和解析>>

同步練習(xí)冊(cè)答案