13、用數(shù)學(xué)歸納法證明:當(dāng)n∈N*時(shí),1+2+22+…+25n-1是31的倍數(shù)時(shí),當(dāng)n=1時(shí),原式的值為
31
;從k到k+1時(shí)需增添的項(xiàng)是
25k+25k+1+25k+2+25k+3+25k+4
分析:從式子1+2+22+…+25n-1是觀察當(dāng)n=1時(shí)的值以及當(dāng)從n=k到n=k+1的變化情況,從而解決問(wèn)題.
解答:解:當(dāng)n=1時(shí),原式的值為1+2+22+23+24=31,
當(dāng)n=k時(shí),原式=1+2+22+…+25k-1
當(dāng)n=k+1時(shí),原式=1+2+22+…+25k+4
∴從k到k+1時(shí)需增添的項(xiàng)是 25k+25k+1+25k+2+25k+3+25k+4
故填:32  25k+25k+1+25k+2+25k+3+25k+4
點(diǎn)評(píng):本題主要考查數(shù)學(xué)歸納法,數(shù)學(xué)歸納法的基本形式
設(shè)P(n)是關(guān)于自然數(shù)n的命題,若
1°P(n0)成立(奠基)
2°假設(shè)P(k)成立(k≥n0),可以推出P(k+1)成立(歸納),則P(n)對(duì)一切大于等于n0的自然數(shù)n都成立
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m,n為正整數(shù).
(Ⅰ)用數(shù)學(xué)歸納法證明:當(dāng)x>-1時(shí),(1+x)m≥1+mx;
(Ⅱ)對(duì)于n≥6,已知(1-
1
n+3
)n
1
2
,求證(1-
m
n+3
)n<(
1
2
)m
,m=1,2…,n;
(Ⅲ)求出滿(mǎn)足等式3n+4n+5n+…+(n+2)n=(n+3)n的所有正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:函數(shù)f(x)=-
1
6
x3+
1
2
x2+x
,x∈R.
(Ⅰ)求證:函數(shù)f(x)的圖象關(guān)于點(diǎn)A(1,
4
3
)
中心對(duì)稱(chēng),并求f(-2007)+f(-2006)+…+f(0)+f(1)+…+f(2009)的值.
(Ⅱ)設(shè)g(x)=f′(x),an+1=g(an),n∈N+,且1<a1<2,求證:
(ⅰ)請(qǐng)用數(shù)學(xué)歸納法證明:當(dāng)n≥2時(shí),1<an
3
2
;
(ⅱ)|a1-
2
|+|a2-
2
|+…+|an-
2
|<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理科做)設(shè)f(n)=1+
1
2
+
1
3
+…+
1
n
,用數(shù)學(xué)歸納法證明:當(dāng)n≥2,n∈N*時(shí),n+f(1)+f(2)+…+f(n-1)=nf(n).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用數(shù)學(xué)歸納法證明:當(dāng)n為正奇數(shù)時(shí),xn+yn能被x+y整除,第二步的假設(shè)應(yīng)寫(xiě)成
假設(shè)n=2k-1,k∈N*時(shí)命題正確,即當(dāng)n=2k-1,k∈N*時(shí),x2k-1+y2k-1能被x+y整除
假設(shè)n=2k-1,k∈N*時(shí)命題正確,即當(dāng)n=2k-1,k∈N*時(shí),x2k-1+y2k-1能被x+y整除

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用數(shù)學(xué)歸納法證明:當(dāng)n為正奇數(shù)時(shí),xn+yn能被x+y整除,第二步的假設(shè)應(yīng)寫(xiě)成假設(shè)n=
2k-1
2k-1
,k∈N*時(shí)命題正確,再證明n=
2k+1
2k+1
,k∈N*時(shí)命題正確.

查看答案和解析>>

同步練習(xí)冊(cè)答案