【題目】如圖,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°,AC=AB=AA1,E是BC的中點(diǎn).
(1)求證:AE⊥B1C;
(2)若G為C1C中點(diǎn),求二面角C-AG-E的正切值.
【答案】(1)見(jiàn)解析;(2)
【解析】
(1)證明AE⊥BB1和AE⊥BC得到AE⊥面BB1C1C,進(jìn)而得到證明.
(2)連接AG,設(shè)P是AC的中點(diǎn),過(guò)點(diǎn)P作PQ⊥AG于Q,連EP,EQ,證明EP⊥平面ACC1A1得到∠PQE是二面角C-AG-E的平面角,計(jì)算得到答案.
(1)因?yàn)?/span>BB1⊥面ABC,AE面ABC,所以AE⊥BB1
由AB=AC,E為BC的中點(diǎn)得到AE⊥BC·
∵BC∩BB1=B∴AE⊥面BB1C1C
∴AE⊥B1C
(2)如圖所示:連接AG,設(shè)P是AC的中點(diǎn),過(guò)點(diǎn)P作PQ⊥AG于Q,連EP,EQ,
則EP⊥AC,又∵平面ABC⊥平面ACC1A1
∴EP⊥平面ACC1A1,而PQ⊥AG∴EQ⊥AG.
∴∠PQE是二面角C-AG-E的平面角.
不妨設(shè)AB=AC=AA1=2,
則EP=1,AP=1,PQ=,得tan∠PQE==
所以二面角C-AG-E的平面角正切值是
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于函數(shù),有下列四個(gè)命題:①的值域是;②是奇函數(shù);③在上單調(diào)遞增;④方程總有四個(gè)不同的解;其中正確的是( )
A.①②B.②③C.②④D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓+=1與雙曲線-=1有公共的焦點(diǎn)F1,F2,P是兩曲線的一個(gè)交點(diǎn),則cos∠F1PF2=______ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計(jì)如表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份代碼t | 1 | 2 | 3 | 4 | 5 | 6 |
年產(chǎn)量y(萬(wàn)噸) | 6.6 | 6.7 | 7 | 7.1 | 7.2 | 7.4 |
(Ⅰ)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程;
(Ⅱ)根據(jù)線性回歸方程預(yù)測(cè)2019年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量.
附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.(參考數(shù)據(jù):,計(jì)算結(jié)果保留小數(shù)點(diǎn)后兩位)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),任取,記函數(shù)在區(qū)間上的最大值為最小值為記. 則關(guān)于函數(shù)有如下結(jié)論:
①函數(shù)為偶函數(shù);
②函數(shù)的值域?yàn)?/span>;
③函數(shù)的周期為2;
④函數(shù)的單調(diào)增區(qū)間為.
其中正確的結(jié)論有____________.(填上所有正確的結(jié)論序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市在進(jìn)行規(guī)劃時(shí),準(zhǔn)備設(shè)計(jì)一個(gè)圓形的開(kāi)放式公園.為達(dá)到社會(huì)和經(jīng)濟(jì)效益雙豐收.園林公司進(jìn)行如下設(shè)計(jì),安排圓內(nèi)接四邊形作為綠化區(qū)域,其余作為市民活動(dòng)區(qū)域.其中區(qū)域種植花木后出售,區(qū)域種植草皮后出售,已知草皮每平方米售價(jià)為元,花木每平方米的售價(jià)是草皮每平方米售價(jià)的三倍. 若 km , km
(1)若 km ,求綠化區(qū)域的面積;
(2)設(shè),當(dāng)取何值時(shí),園林公司的總銷售金額最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在封閉的平面區(qū)域D內(nèi)任意兩點(diǎn)的距離的最大值稱為平面區(qū)域D的“直徑".已知銳角三角形的三個(gè)頂點(diǎn)A,B,C在半徑為1的圓上,且,分別以各邊為直徑向外作三個(gè)半圓,這三個(gè)半圓和構(gòu)成平面區(qū)域D,則平面區(qū)域D的“直徑”是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是由兩個(gè)全等的菱形和組成的空間圖形,,∠BAF=∠ECD=60°.
(1)求證:;
(2)如果二面角B-EF-D的平面角為60°,求直線與平面所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com