【題目】如圖,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°,AC=AB=AA1,EBC的中點(diǎn).

(1)求證:AEB1C

(2)若GC1C中點(diǎn),求二面角C-AG-E的正切值.

【答案】(1)見(jiàn)解析;(2)

【解析】

(1)證明AEBB1AEBC得到AE⊥面BB1C1C,進(jìn)而得到證明.

(2)連接AG,設(shè)PAC的中點(diǎn),過(guò)點(diǎn)PPQAGQ,連EP,EQ,證明EP⊥平面ACC1A1得到∠PQE是二面角C-AG-E的平面角,計(jì)算得到答案.

(1)因?yàn)?/span>BB1⊥面ABC,AEABC,所以AEBB1

AB=AC,EBC的中點(diǎn)得到AEBC·

BCBB1=BAE⊥面BB1C1C

AEB1C

(2)如圖所示:連接AG,設(shè)PAC的中點(diǎn),過(guò)點(diǎn)PPQAGQ,連EP,EQ

EPAC,又∵平面ABC⊥平面ACC1A1

EP⊥平面ACC1A1,而PQAGEQAG

∴∠PQE是二面角C-AG-E的平面角.

不妨設(shè)AB=AC=AA1=2,

EP=1,AP=1,PQ=,得tanPQE==

所以二面角C-AG-E的平面角正切值是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等差數(shù)列中,,

(1)求的通項(xiàng)公式

(2)求的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于函數(shù),有下列四個(gè)命題:①的值域是;②是奇函數(shù);③上單調(diào)遞增;④方程總有四個(gè)不同的解;其中正確的是( )

A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓+=1與雙曲線-=1有公共的焦點(diǎn)F1,F2,P是兩曲線的一個(gè)交點(diǎn),則cosF1PF2=______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計(jì)如表:

年份

2012

2013

2014

2015

2016

2017

年份代碼t

1

2

3

4

5

6

年產(chǎn)量y(萬(wàn)噸)

6.6

6.7

7

7.1

7.2

7.4

Ⅰ)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程

(Ⅱ)根據(jù)線性回歸方程預(yù)測(cè)2019年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量.

附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:.(參考數(shù)據(jù):,計(jì)算結(jié)果保留小數(shù)點(diǎn)后兩位)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),任取,記函數(shù)在區(qū)間上的最大值為最小值為. 則關(guān)于函數(shù)有如下結(jié)論:

函數(shù)為偶函數(shù);

函數(shù)的值域?yàn)?/span>

函數(shù)的周期為2;

函數(shù)的單調(diào)增區(qū)間為.

其中正確的結(jié)論有____________.(填上所有正確的結(jié)論序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市在進(jìn)行規(guī)劃時(shí),準(zhǔn)備設(shè)計(jì)一個(gè)圓形的開(kāi)放式公園.為達(dá)到社會(huì)和經(jīng)濟(jì)效益雙豐收.園林公司進(jìn)行如下設(shè)計(jì),安排圓內(nèi)接四邊形作為綠化區(qū)域,其余作為市民活動(dòng)區(qū)域.其中區(qū)域種植花木后出售,區(qū)域種植草皮后出售,已知草皮每平方米售價(jià)為元,花木每平方米的售價(jià)是草皮每平方米售價(jià)的三倍. km , km

(1)若 km ,求綠化區(qū)域的面積;

(2)設(shè),當(dāng)取何值時(shí),園林公司的總銷售金額最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在封閉的平面區(qū)域D內(nèi)任意兩點(diǎn)的距離的最大值稱為平面區(qū)域D直徑".已知銳角三角形的三個(gè)頂點(diǎn)A,B,C在半徑為1的圓上,且,分別以各邊為直徑向外作三個(gè)半圓,這三個(gè)半圓和構(gòu)成平面區(qū)域D,則平面區(qū)域D直徑______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是由兩個(gè)全等的菱形組成的空間圖形,,∠BAF=∠ECD60°.

1)求證:

2)如果二面角BEFD的平面角為60°,求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案