(1)把下列的極坐標(biāo)方程化為直角坐標(biāo)方程(并說(shuō)明對(duì)應(yīng)的曲線):
① ②
(2)把下列的參數(shù)方程化為普通方程(并說(shuō)明對(duì)應(yīng)的曲線):
③ ④
(1)①,表示的曲線為圓。
②x+y=2,表示的曲線為直線
(2)③ 表示的曲線為雙曲線
④ (表示的曲線為拋物線的一部分。
解析試題分析:(1)先將原極坐標(biāo)方程兩邊同乘以ρ后化成直角坐標(biāo)方程,進(jìn)而可得曲線的形狀.(2)根據(jù)平方關(guān)系消去參數(shù)θ可得普通方程,進(jìn)而可得曲線的形狀.
試題解析:(1) ① 2分
表示的曲線為圓。 3分
②x+y=2 5分
表示的曲線為直線 6分
(2)③ 8分
表示的曲線為雙曲線 9分
④ ( 11分
表示的曲線為拋物線的一部分。 12分
考點(diǎn):簡(jiǎn)單曲線的極坐標(biāo)方程;參數(shù)方程化成普通方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直線的極坐標(biāo)方程為,圓M的參數(shù)方程為
。
求:(1)將直線的極坐標(biāo)方程化為直角坐標(biāo)方程; (2)求圓M上的點(diǎn)到直線的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知某圓的極坐標(biāo)方程是,求:
(1)求圓的普通方程和一個(gè)參數(shù)方程;
(2)圓上所有點(diǎn)中的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直角坐標(biāo)系中,已知點(diǎn),曲線的參數(shù)方程為為參數(shù)).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為
(Ⅰ)判斷點(diǎn)與直線的位置關(guān)系,說(shuō)明理由;
(Ⅱ)設(shè)直線與曲線的兩個(gè)交點(diǎn)為、,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
極坐標(biāo)與參數(shù)方程: 已知點(diǎn)P是曲線上一點(diǎn),O為原點(diǎn).若直線OP的傾斜角為,求點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,若過(guò)點(diǎn)且與極軸垂直的直線交曲線于A、B兩點(diǎn),則______ _.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,從極點(diǎn)O作直線與另一直線相交于點(diǎn)M,在OM上取一點(diǎn)P,使.設(shè)R為上任意一點(diǎn),則RP的最小值 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在極坐標(biāo)系中,曲線C1:ρ(cosθ+sinθ)=1與曲線C2:ρ=a(a>0)的一個(gè)交點(diǎn)在極軸上,求a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com