設(shè)橢圓的離心率為,點(diǎn)、,原點(diǎn)到直線的距離為
(1)求橢圓的方程;
(2)設(shè)點(diǎn),點(diǎn)在橢圓上(與、均不重合),點(diǎn)在直線上,若直線的方程為,且,試求直線的方程.

(1)(2)

解析試題分析:解:(1)由                    2分
由點(diǎn),0),(0,)知直線的方程為,
于是可得直線的方程為                           4分
因此,得,,
所以橢圓的方程為                         6分
(2)由(Ⅰ)知的坐標(biāo)依次為(2,0)、,
因?yàn)橹本經(jīng)過點(diǎn),所以,得,
即得直線的方程為                          8分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/cb/c/2ecq7.png" style="vertical-align:middle;" />,所以,即         9分
設(shè)的坐標(biāo)為,則
,即直線的斜率為4                12分
考點(diǎn):直線與橢圓的位置關(guān)系
點(diǎn)評:主要是考查了直線與橢圓的位置關(guān)系,以及點(diǎn)到直線的距離公式的綜合運(yùn)用,屬于中檔題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的兩個(gè)焦點(diǎn)為,點(diǎn)在橢圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點(diǎn),設(shè)點(diǎn)是橢圓上任一點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的左頂點(diǎn),過右焦點(diǎn)且垂直于長軸的弦長為
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點(diǎn)的直線與橢圓交于點(diǎn),與軸交于點(diǎn),過原點(diǎn)與平行的直線與橢圓交于點(diǎn),求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

平面內(nèi)動(dòng)點(diǎn)到定點(diǎn)的距離比它到軸的距離大
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)過的直線相交于兩點(diǎn),若,求弦的長。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓()過點(diǎn),其左、右焦點(diǎn)分別為,且.
(1)求橢圓的方程;
(2)若是直線上的兩個(gè)動(dòng)點(diǎn),且,則以為直徑的圓是否過定點(diǎn)?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線lykx+2(k為常數(shù))過橢圓=1(ab>0)的上頂點(diǎn)B和左焦點(diǎn)F,直線l被圓x2y2=4截得的弦長為d.
(1)若d=2,求k的值;
(2)若d,求橢圓離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn)、, 是一個(gè)動(dòng)點(diǎn), 且直線、的斜率之積為.
(1) 求動(dòng)點(diǎn)的軌跡的方程;
(2) 設(shè), 過點(diǎn)的直線兩點(diǎn), 若對滿足條件的任意直線, 不等式恒成立, 求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知平面內(nèi)一動(dòng)點(diǎn)到點(diǎn)的距離與點(diǎn)軸的距離的差等于1.(I)求動(dòng)點(diǎn)的軌跡的方程;(II)過點(diǎn)作兩條斜率存在且互相垂直的直線,設(shè)與軌跡相交于點(diǎn),與軌跡相交于點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,點(diǎn)到兩點(diǎn),的距離之和等于4,設(shè)點(diǎn)的軌跡為
(Ⅰ)寫出的方程;
(Ⅱ)設(shè)直線交于兩點(diǎn).k為何值時(shí)?此時(shí)的值是多少?

查看答案和解析>>

同步練習(xí)冊答案