【題目】已知函數(shù) ,其中表示中的較小者.

(1)在坐標系中畫出函數(shù)的圖像;

(2)設函數(shù)的最大值為試判斷與1的大小關(guān)系,并說明理由.

(參考數(shù)據(jù): , ,

【答案】1見解析;(2見解析.

【解析】試題分析:(1)根據(jù)其中表示中的較小者,即可畫出函數(shù)的圖像;(2)由題意可知, 為函數(shù)圖像交點的橫坐標,即,,根據(jù)零點存在定理及函數(shù)上單調(diào)遞增,且為連續(xù)曲線,可得有唯一零點,再由函數(shù)上單調(diào)遞減,即可得證.

試題解析:(1)作出函數(shù)的圖像如下:

(2)由題意可知, 為函數(shù)圖像交點的橫坐標,且,

.

,易知即為函數(shù)的零點,

,

,

又∵函數(shù)上單調(diào)遞增,且為連續(xù)曲線,

有唯一零點

∵函數(shù)上單調(diào)遞減,

.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】給出下列命題:

①如果不同直線都平行于平面,則一定不相交;

②如果不同直線都垂直于平面,則一定平行;

③如果平面互相平行,若直線,直線,則;

④如果平面互相垂直,且直線也互相垂直,若,則;

其中正確的個數(shù)為( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過點(0,2)的直線l與中心在原點,焦點在x軸上且離心率為 的橢圓C相交于A、B兩點,直線 過線段AB的中點,同時橢圓C上存在一點與右焦點關(guān)于直線l對稱.
(1)求直線l的方程;
(2)求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線 的離心率為e,經(jīng)過第一、三象限的漸近線的斜率為k,且e≥ k.
(1)求m的取值范圍;
(2)設條件p:e≥ k;條件q:m2﹣(2a+2)m+a(a+2)≤0.若p是q的必要不充分條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,MD⊥平面ABCD,NB∥MD,且AD=2,NB=1,CD=MD=3.

(1)過B作平面BFG∥平面MNC,平面BFG與CD、DM分別交于F、G,求AF與平面MNC所成角的正弦值;
(2)E為直線MN上一點,且平面ADE⊥平面MNC,求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,三棱柱A1B1C1﹣ABC的側(cè)棱AA1⊥底面ABC,AB⊥AC,AB=AA1 , D是棱CC1的中點.

(Ⅰ)證明:平面AB1C⊥平面A1BD;
(Ⅱ)在棱A1B1上是否存在一點E,使C1E∥平面A1BD?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正四棱錐中, 是正方形, 是正方形的中心, 底面, 的中點.

(I)證明: 平面

(II)證明:平面平面;

(III)已知: ,求點到面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】大西洋鮭魚每年都要逆流而上,游回產(chǎn)地產(chǎn)卵,研究鮭魚的科學家發(fā)現(xiàn)鮭魚的游速單位: 與其耗氧量單位數(shù)之間的關(guān)系可以表示為函數(shù),其中為常數(shù),已知一條鮭魚在靜止時的耗氧量為100個單位;而當它的游速為時,其耗氧量為2700個單位.

1)求出游速與其耗氧量單位數(shù)之間的函數(shù)解析式;

(2)求當一條鮭魚的游速不高于時,其耗氧量至多需要多少個單位?

查看答案和解析>>

同步練習冊答案