【題目】已知函數(shù), ,設(其中表示中的較小者).
(1)在坐標系中畫出函數(shù)的圖像;
(2)設函數(shù)的最大值為,試判斷與1的大小關(guān)系,并說明理由.
(參考數(shù)據(jù): , , )
【答案】(1)見解析;(2)見解析.
【解析】試題分析:(1)根據(jù)(其中表示中的較小者),即可畫出函數(shù)的圖像;(2)由題意可知, 為函數(shù)與圖像交點的橫坐標,即,設,根據(jù)零點存在定理及函數(shù)在上單調(diào)遞增,且為連續(xù)曲線,可得有唯一零點,再由函數(shù)在上單調(diào)遞減,即可得證.
試題解析:(1)作出函數(shù)的圖像如下:
(2)由題意可知, 為函數(shù)與圖像交點的橫坐標,且,
∴.
設,易知即為函數(shù)的零點,
∵, ,
∴,
又∵函數(shù)在上單調(diào)遞增,且為連續(xù)曲線,
∴有唯一零點
∵函數(shù)在上單調(diào)遞減,
∴,即.
科目:高中數(shù)學 來源: 題型:
【題目】給出下列命題:
①如果不同直線都平行于平面,則一定不相交;
②如果不同直線都垂直于平面,則一定平行;
③如果平面互相平行,若直線,直線,則;
④如果平面互相垂直,且直線也互相垂直,若,則;
其中正確的個數(shù)為( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】過點(0,2)的直線l與中心在原點,焦點在x軸上且離心率為 的橢圓C相交于A、B兩點,直線 過線段AB的中點,同時橢圓C上存在一點與右焦點關(guān)于直線l對稱.
(1)求直線l的方程;
(2)求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線 的離心率為e,經(jīng)過第一、三象限的漸近線的斜率為k,且e≥ k.
(1)求m的取值范圍;
(2)設條件p:e≥ k;條件q:m2﹣(2a+2)m+a(a+2)≤0.若p是q的必要不充分條件,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,MD⊥平面ABCD,NB∥MD,且AD=2,NB=1,CD=MD=3.
(1)過B作平面BFG∥平面MNC,平面BFG與CD、DM分別交于F、G,求AF與平面MNC所成角的正弦值;
(2)E為直線MN上一點,且平面ADE⊥平面MNC,求 的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,三棱柱A1B1C1﹣ABC的側(cè)棱AA1⊥底面ABC,AB⊥AC,AB=AA1 , D是棱CC1的中點.
(Ⅰ)證明:平面AB1C⊥平面A1BD;
(Ⅱ)在棱A1B1上是否存在一點E,使C1E∥平面A1BD?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正四棱錐中, 是正方形, 是正方形的中心, 底面, 是的中點.
(I)證明: 平面;
(II)證明:平面平面;
(III)已知: ,求點到面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】大西洋鮭魚每年都要逆流而上,游回產(chǎn)地產(chǎn)卵,研究鮭魚的科學家發(fā)現(xiàn)鮭魚的游速(單位: )與其耗氧量單位數(shù)之間的關(guān)系可以表示為函數(shù),其中為常數(shù),已知一條鮭魚在靜止時的耗氧量為100個單位;而當它的游速為時,其耗氧量為2700個單位.
(1)求出游速與其耗氧量單位數(shù)之間的函數(shù)解析式;
(2)求當一條鮭魚的游速不高于時,其耗氧量至多需要多少個單位?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com