在平面幾何里有射影定理:設(shè)△ABC的兩邊AB⊥AC,D是A點在BC上的射影,則AB2=BD·BC.拓展到空間,在四面體A—BCD中,DA⊥面ABC,點O是A在面BCD內(nèi)的射影,且O在面BCD內(nèi),類比平面三角形射影定理,△ABC,△BOC,△BDC三者面積之間關(guān)系為           

解析試題分析:依題意作出四面體A—BCD.連接DO并延長交BC于點E,連AO、AE,則易知AO⊥DE,BC⊥AO.由DA⊥面ABC ,得DA⊥BC,從而BC⊥面AED,所以DE⊥BC,AE⊥BC.又易知△AED為直角三角形,其中,AO為斜邊ED上的高,所以由射影定理,.又所以.

考點:射影定理、類比思想

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

若一條直線和平面所成的角為,則此直線與該平面內(nèi)任意一條直線所成角的取值范圍是                      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

等腰梯形,上底,腰,下底,以下底所在直線為x軸,則由斜二測畫法畫出的直觀圖的面積為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

給定下列四個命題:
①若一個平面內(nèi)的兩條直線與另一個平面都平行,那么這兩個平面相互平行;
②若一個平面經(jīng)過另一個平面的垂線,那么這兩個平面相互垂直;
③垂直于同一直線的兩條直線相互平行;
④若兩個平面垂直,那么一個平面內(nèi)與它們的交線不垂直的直線與另一個平面也不垂直.其中,為真命題的是                。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

A(1,-2,1),B(2,2,2),點P在z軸上,且|PA|=|PB|,則點P的坐標(biāo)為               .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

在底面為正方形的長方體上任意選擇4個頂點,它們可能是如下各種幾何形體的4個頂點,這些幾何形體是            (寫出所有正確結(jié)論的編號)
①矩形;②不是矩形的平行四邊形;③有三個面為直角三角形,有一個面為等腰三角形的四面體;④每個面都是等腰三角形的四面體;⑤每個面都是直角三角形的四面體.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知一個平面與正方體的12條棱的夾角均為,那么        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

正方體的棱長為2,則異面直線與AC之間的距離為_________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

設(shè)α,β為兩個不重合的平面,m,n為兩條不重合的直線,給出下列四個命題:
①若m⊥n,m⊥α,n?α則n∥α;
②若α⊥β,則α∩β=m,n?α,n⊥m,則n⊥β;
③若m⊥n,m∥α,n∥β,則α⊥β;
④若n?α,m?β,α與β相交且不垂直,則n與m不垂直.
其中,所有真命題的序號是________.

查看答案和解析>>

同步練習(xí)冊答案