精英家教網 > 高中數學 > 題目詳情
由大于0的自然數構成的等差數列{an},它的最大項為26,其所有項的和為70;
(1)求數列{an}的項數n;
(2)求此數列.
【答案】分析:不妨設最大項是an sn==70 因為{an}是自然數序列,所以n(a1+an)=140,140可以被n整除,又an<a1+an=140/n,an=26,所以n<=5.又a1=a1+an-an=140/n-26<an=26,所以n>=3. d=(an-a1)/(n-1)=(52-140/n)/(n-1)當n=4,5時對應的d=17/3,6.故n=5,an=6n-4.當最大項是a1時,同理可求得:n=5,an=32-6n,即可求出
解答:解:設等差數列{an}的公差為d,又因為等差數列{an}的最大項為26,
(1)不妨設最大項是an
sn==70
因為{an}是自然數序列,所以n(a1+an)=140,140可以被n整除,
又an<a1+an=140/n,an=26,所以n<=5.
又a1=a1+an-an=140/n-26<an=26,所以n>=3.
d=(an-a1)/(n-1)=(52-140/n)/(n-1)
當n=4,5時
對應的d=17/3,6,故n=5
當最大項是a1時,同理可求得:n=5
故n=5
(2)由(1)知當an=26,n=5時,an=6n-4,數列為2,8,14,20,26
當a1=26,n=5時,an=32-6n,數列為26,20,14,8,2
所以答案為2,8,14,20,26或26,20,14,8,2
點評:解答本題的關鍵在于自然數列的首項,公差,通項都是正整數,然后根據等差數列的性質求解,希望學生在作此題前要熟練掌握等差數列的求和公式和通項公式
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

由大于0的自然數構成的等差數列{an},它的最大項為26,其所有項的和為70;
(1)求數列{an}的項數n;
(2)求此數列.

查看答案和解析>>

科目:高中數學 來源: 題型:

(09年武漢二中調研文)(13分)

由大于0的自然數構成的等差數列,它的最大項為26,其所有2項的和多為70.

(1)求數列的項數n;

(2)求此數列.

查看答案和解析>>

科目:高中數學 來源: 題型:

(09年武漢二中調研文)(13分)

由大于0的自然數構成的等差數列,它的最大項為26,其所有2項的和多為70.

(1)求數列的項數n;

    (2)求此數列.

查看答案和解析>>

同步練習冊答案