知雙曲線的離心率為e.

(1)集合M={1,2,3,4},N={1,2},若a∈M,b∈N,求e>的概率

(2)若0<a<4,0<b<2,求e>的概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河北省高三下學(xué)期開學(xué)考試數(shù)學(xué)文卷 題型:選擇題

已知雙曲線的離心率為e,左、右兩焦點(diǎn)分別為F1、F2,焦距為,拋物線C以F2為頂點(diǎn),F(xiàn)1為焦點(diǎn),點(diǎn)P為拋物線與雙曲線右支上的一個(gè)交點(diǎn),若a|PF2|+c|PF1|=8a2,則e的值為             (    )

       A.                 B. 3                    C.                   D.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河北省高三下學(xué)期開學(xué)考試數(shù)學(xué)文卷 題型:選擇題

已知雙曲線的離心率為e,左、右兩焦點(diǎn)分別為F1、F2,焦距為,拋物線C以F2為頂點(diǎn),F(xiàn)1為焦點(diǎn),點(diǎn)P為拋物線與雙曲線右支上的一個(gè)交點(diǎn),若a|PF2|+c|PF1|=8a2,則e的值為             (    )

       A.                 B. 3                    C.                   D.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線數(shù)學(xué)公式的離心率為e,右頂點(diǎn)為A,左、右焦點(diǎn)分別為F1、F2,點(diǎn)E為右準(zhǔn)線上的動(dòng)點(diǎn),∠AEF2的最大值為θ.
(1)若雙曲線的左焦點(diǎn)為F1(-4,0),一條漸近線的方程為3x-2y=0,求雙曲線的方程;
(2)求sinθ(用e表示);
(3)如圖,如果直線l與雙曲線的交點(diǎn)為P、Q,與兩條漸近線的交點(diǎn)為P'、Q',O為坐標(biāo)原點(diǎn),求證:數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河北省衡水市冀州中學(xué)高三(下)開學(xué)數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

已知雙曲線的離心率為e,左、右兩焦點(diǎn)分別為F1、F2,焦距為2c,拋物線C以F2為頂點(diǎn),F(xiàn)1為焦點(diǎn),點(diǎn)P為拋物線與雙曲線右支上的一個(gè)交點(diǎn),若a|PF2|+c|PF1|=8a2,則e的值為( )
A.
B.3
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年四川省南充一中高三(下)6月適應(yīng)性考試數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知雙曲線的離心率為e,右頂點(diǎn)為A,左、右焦點(diǎn)分別為F1、F2,點(diǎn)E為右準(zhǔn)線上的動(dòng)點(diǎn),∠AEF2的最大值為θ.
(1)若雙曲線的左焦點(diǎn)為F1(-4,0),一條漸近線的方程為3x-2y=0,求雙曲線的方程;
(2)求sinθ(用e表示);
(3)如圖,如果直線l與雙曲線的交點(diǎn)為P、Q,與兩條漸近線的交點(diǎn)為P'、Q',O為坐標(biāo)原點(diǎn),求證:

查看答案和解析>>

同步練習(xí)冊答案