已知圓,直線,點(diǎn)在直線上,過(guò)點(diǎn)作圓的切線、,切點(diǎn)為、

(Ⅰ)若,求點(diǎn)坐標(biāo);

(Ⅱ)若點(diǎn)的坐標(biāo)為,過(guò)作直線與圓交于、兩點(diǎn),當(dāng)時(shí),求直線的方程;

(III)求證:經(jīng)過(guò)、三點(diǎn)的圓與圓的公共弦必過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo).

 

【答案】

(Ⅰ);(Ⅱ);(III)

【解析】

試題分析:解:(Ⅰ)由條件可知,設(shè),則解得,所以………………4分

(Ⅱ)由條件可知圓心到直線的距離,設(shè)直線的方程為,

,解得 

所以直線的方程為………………8分

(III)設(shè),過(guò)、、三點(diǎn)的圓即以為直徑的圓,

其方程為

整理得相減得

所以兩圓的公共弦過(guò)定點(diǎn)………………14分

考點(diǎn):兩點(diǎn)間的距離公式;點(diǎn)到直線的距離公式;圓的方程。

點(diǎn)評(píng):本題第一、二小題較容易,第三小題較難。但第三小題解法巧妙,使得問(wèn)題簡(jiǎn)化。這種解法是這樣的,將兩圓的方程相減,得到一條直線的方程,由于兩圓相交于兩點(diǎn),因而這條直線也經(jīng)過(guò)這兩點(diǎn),故這條直線就是弦所在的直線。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知L為過(guò)點(diǎn)P(-
3
3
2
,-
3
2
)
且傾斜角為30°的直線,圓C為圓心是坐標(biāo)原點(diǎn)且半徑等于1的圓,Q表示頂點(diǎn)在原點(diǎn)而焦點(diǎn)是(
2
8
,0)
的拋物線,設(shè)A為L(zhǎng)和C在第三象限的交點(diǎn),B為C和Q在第四象限的交點(diǎn).
(1)寫出直線L、圓C和拋物線Q的方程,并作草圖.
(2)寫出線段PA、圓弧AB和拋物線上OB一段的函數(shù)表達(dá)式.
(3)設(shè)P′、B′依次為從P、B到x軸的垂足,求由圓弧AB和直線段BB′、B′P′、P′P、PA所包含的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建福州市畢業(yè)班質(zhì)量檢查文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓C:的離心率為,

直線:y=x+2與原點(diǎn)為圓心,以橢圓C的短軸長(zhǎng)為直

徑的圓相切.

 (Ⅰ)求橢圓C的方程;

(Ⅱ)過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn).設(shè)直線的斜率,在軸上是否存在點(diǎn),使得是以GH為底邊的等腰三角形. 如果存在,求出實(shí)數(shù)的取值范圍,如果不存在,請(qǐng)說(shuō)明理由.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省高三5月模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓的離心率為,直線:與以原點(diǎn)為圓心、以橢圓的短半軸長(zhǎng)為半徑的圓相切.

(1)求橢圓的方程;

(2)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn),直線過(guò)點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線

于點(diǎn),線段垂直平分線交于點(diǎn),求點(diǎn)的軌跡的方程;

(3)當(dāng)P不在軸上時(shí),在曲線上是否存在兩個(gè)不同點(diǎn)C、D關(guān)于對(duì)稱,若存在,

求出的斜率范圍,若不存在,說(shuō)明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分13分)

        已知橢圓C的中心在的點(diǎn),焦點(diǎn)在x軸上,F(xiàn)1,F(xiàn)2分別是橢圓C的左、右焦點(diǎn),M是橢圓短軸的一個(gè)端點(diǎn),過(guò)F1的直線與橢圓交于A,B兩點(diǎn),的面積為4,的周長(zhǎng)為

   (I)求橢圓C的方程;

   (II)設(shè)點(diǎn)Q的從標(biāo)為(1,0),是否存在橢圓上的點(diǎn)P及以Q為圓心的一個(gè)圓,使得該圓與直

線PF1,PF2都相切,若存在,求出P點(diǎn)坐標(biāo)及圓的方程;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:1978年全國(guó)統(tǒng)一高考數(shù)學(xué)試卷(附加題)(解析版) 題型:解答題

已知L為過(guò)點(diǎn)P且傾斜角為30°的直線,圓C為圓心是坐標(biāo)原點(diǎn)且半徑等于1的圓,Q表示頂點(diǎn)在原點(diǎn)而焦點(diǎn)是的拋物線,設(shè)A為L(zhǎng)和C在第三象限的交點(diǎn),B為C和Q在第四象限的交點(diǎn).
(1)寫出直線L、圓C和拋物線Q的方程,并作草圖.
(2)寫出線段PA、圓弧AB和拋物線上OB一段的函數(shù)表達(dá)式.
(3)設(shè)P′、B′依次為從P、B到x軸的垂足,求由圓弧AB和直線段BB′、B′P′、P′P、PA所包含的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案