【題目】設(shè)函數(shù)f(x)=|2x+1|﹣|x﹣2|.
(1)求不等式f(x)>2的解集;
(2)x∈R,使f(x)≥t2﹣ t,求實(shí)數(shù)t的取值范圍.
【答案】
(1)解:
當(dāng) ,∴x<﹣5
當(dāng) ,∴1<x<2
當(dāng)x≥2,x+3>2,x>﹣1,∴x≥2
綜上所述 {x|x>1或x<﹣5}
(2)解:由(1)得 ,若x∈R, 恒成立,
則只需 ,
綜上所述
【解析】(1)根據(jù)絕對(duì)值的代數(shù)意義,去掉函數(shù)f(x)=|2x+1|﹣|x﹣2|中的絕對(duì)值符號(hào),求解不等式f(x)>2,(2)由(1)得出函數(shù)f(x)的最小值,若x∈R, 恒成立,只須 即可,求出實(shí)數(shù)t的取值范圍.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)的最值及其幾何意義的相關(guān)知識(shí)可以得到問題的答案,需要掌握利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲;利用圖象求函數(shù)的最大(。┲;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(。┲担
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線上任意一點(diǎn)到直線的距離是它到點(diǎn)的距離的2倍.
(1) 求曲線的方程;
(2) 過點(diǎn)的直線與曲線交于兩點(diǎn).若是的中點(diǎn),求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F1 , F2是雙曲線C1: ﹣ =1(a>0,b>0)的左、右焦點(diǎn),且F2是拋物線C2:y2=2px(p>0)的焦點(diǎn),P是雙曲線C1與拋物線C2在第一象限內(nèi)的交點(diǎn),線段PF2的中點(diǎn)為M,且|OM|= |F1F2|,其中O為坐標(biāo)原點(diǎn),則雙曲線C1的離心率是( )
A.2+
B.1+
C.2+
D.1+
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣ax2(a∈R)
(Ⅰ) 討論f(x)的單調(diào)性;
(Ⅱ) 若對(duì)于x∈(0,+∞),f(x)≤a﹣1恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=ex(x2+ax+b)有極值點(diǎn)x1 , x2(x1<x2),且f(x1)=x1 , 則關(guān)于x的方程f2(x)+(2+a)f(x)+a+b=0的不同實(shí)根個(gè)數(shù)為( )
A.0
B.3
C.4
D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三次函數(shù)f(x)=x3+bx2+cx+d(a,b,c∈R)過點(diǎn)(3,0),且函數(shù)f(x)在點(diǎn)(0,f(0))處的切線恰好是直線y=0.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù)g(x)=9x+m﹣1,若函數(shù)y=f(x)﹣g(x)在區(qū)間[﹣2,1]上有兩個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某零售店近5個(gè)月的銷售額和利潤額資料如下表:
商店名稱 | |||||
銷售額/千萬元 | 3 | 5 | 6 | 7 | 9 |
利潤額/百萬元 | 2 | 3 | 3 | 4 | 5 |
(1)畫出散點(diǎn)圖.觀察散點(diǎn)圖,說明兩個(gè)變量有怎樣的相關(guān)關(guān)系;
(2)用最小二乘法計(jì)算利潤額關(guān)于銷售額的回歸直線方程;
(3)當(dāng)銷售額為4千萬元時(shí),利用(2)的結(jié)論估計(jì)該零售店的利潤額(百萬元).
[參考公式:,]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: + =1(a>b>0)的離心率為 ,直線x+y+ =0與橢圓E僅有一個(gè)公共點(diǎn).
(1)求橢圓E的方程;
(2)直線l被圓O:x2+y2=3所截得的弦長為3,且與橢圓E交于A、B兩點(diǎn),求△ABO面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com