【題目】已知函數f(x)=|log0.5x|,若正實數m,n(m<n)滿足f(m)=f(n),且f(x)在區(qū)間[m2 , n]上的最大值為4,則n﹣m=( )
A.
B.
C.
D.
科目:高中數學 來源: 題型:
【題目】如圖所示,在正方體ABCD﹣A1B1C1D1中,S是B1D1的中點,E,F,G分別是BC,CD和SC的中點.求證:
(1)直線EG∥平面BDD1B1;
(2)平面EFG∥平面BDD1B1 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,是函數y=f(x)的導函數f′(x)的圖象,則下面判斷正確的是( )
A.在區(qū)間(﹣2,1)上f(x)是增函數
B.在(1,3)上f(x)是減函數
C.在(4,5)上f(x)是增函數
D.當x=4時,f(x)取極大值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓E經過點A(2,3),對稱軸為坐標軸,焦點F1 , F2在x軸上,離心率e= .
(1)求橢圓E的方程;
(2)求∠F1AF2的角平分線所在直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某保險公司研究一款暢銷保險產品的保費與銷量之間的關系,根據歷史經驗,若每份保單的保費在元的基礎上每增加元,對應的銷量(萬份)與(元)有較強線性相關關系,從歷史銷售記錄中抽樣得到如下組與的對應數據:
(1)試據此求出關于的線性回歸方程;
(2)若把回歸方程當做與的線性關系,試計算每份保單的保費定為多少元此產品的保費總收入最大,并求出該最大值;
參考公式:
參考數據:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面直角坐標系xOy中,A(2,4),B(﹣1,2),C,D為動點,
(1)若C(3,1),求平行四邊形ABCD的兩條對角線的長度
(2)若C(a,b),且 ,求 取得最小值時a,b的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com