(14分)如右圖,簡單組合體ABCDPE,其底面ABCD為邊長為的正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC=.

(1)若N為線段PB的中點,求證:EN//平面ABCD;
(2)求點到平面的距離.

(1)只需證NE∥FC; (2)

解析試題分析:(1)解法1:連結(jié)AC與BD交于點F,連結(jié)NF,…………………..1分
∵F為BD的中點,∴NF∥PD且NF=PD……………………………….3
又EC∥PD,且EC=PD,
∴NF∥EC,且NF=EC,∴四邊形NFCE為平行四邊形,…………… 4
∴NE∥FC. …………………. …………….5
∵NE平面ABCD,且平面ABCD   所以EN//平面ABCD;………………….6
(2)(體積法)連結(jié)DE,由題,且,故是三棱錐的高,
…………………. ………………7
在直角梯形中,可求得,且  由(1)所以………9
,…………………11
,…………………………12
設(shè)所求的距離為,則……………..14
解法2:(1)以點D為坐標(biāo)原點,以AD所在的直線為x軸建立空間直角坐標(biāo)系如圖所示
………………………………1,
則B(2,2,0),C(0,2,0),P(0,0,2),E(0,2,1),N(1,1,1),……………2
=(1,-1,0), ……………………..3

,…………… ……………4
是平面ABCD的法向量
∵NE平面ABCD       所以EN//平面ABCD;……………………………….6
(2)由(1)可知,…………….8
設(shè)平面的法向量為來源:學(xué)科網(wǎng)]
…………………. ……………10
解得其中一個法向量為………………………..11
到平面的距離為……14
考點:線面垂直的性質(zhì)定理;線面平行的性質(zhì)定理;點到平面的距離。
點評:設(shè)A是平面α外一點,B是α內(nèi)一點,為α的一個法向量,則點A到平面α的距離。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)
如圖,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=CC1,M為AB的中點。

(Ⅰ)求證:BC1∥平面MA1C;
(Ⅱ)求證:AC1⊥平面A1BC。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在四棱錐中,底面是直角梯形,,∠, ,平面⊥平面.

(1)求證:⊥平面;
(2)求平面和平面所成二面角(小于)的大;
(3)在棱上是否存在點使得∥平面?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)如圖所示,直三棱柱ABC—A1B1C1中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分別是A1B1、A1A的中點.

(1)求的長; (2)求cos< >的值;  (3)求證:A1B⊥C1M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)如圖,在上,過點//的位置(),
使得.

(I)求證:  (II)試問:當(dāng)點上移動時,二面角的平面角的余弦值是否為定值?若是,求出定值,若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知梯形ABCD中,AD∥BC,∠ABC ="∠BAD" =,AB=BC=2AD=4,E、F分別是AB、CD上的點,且EF∥BC。設(shè)AE =,G是BC的中點.沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖).

(1)當(dāng)=2時,求證:BD⊥EG ;
(2)若以F、B、C、D為頂點的三棱錐的體積記為,求的最大值;
(3)當(dāng)取得最大值時,求二面角D-BF-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)如圖,四邊形均為菱形, ,且,

(Ⅰ)求證:平面;
(Ⅱ)求證:AE∥平面FCB;
(Ⅲ)求二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)如圖,四棱錐P—ABCD的底面是矩形,PA⊥面ABCD,PA=2,AB=8,BC=6,點E是PC的中點,F(xiàn)在AD上且AF:FD=1:2.建立適當(dāng)坐標(biāo)系.

(1)求EF的長;
(2)證明:EF⊥PC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖,四棱錐中,底面,四邊形中, ,, ,,E為中點.
(1)求證:CD⊥面PAC;(2)求:異面直線BE與AC所成角的余弦值;

查看答案和解析>>

同步練習(xí)冊答案