【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機(jī)構(gòu)認(rèn)為該事件在一段時(shí)間沒(méi)有發(fā)生大規(guī)模群體感染的標(biāo)準(zhǔn)為連續(xù)10天,每天新增疑似病例不超過(guò)7人”.根據(jù)過(guò)去10天甲、乙、丙、丁四地新增疑似病例的數(shù)據(jù),一定符合該標(biāo)準(zhǔn)的是____.(填序號(hào))

甲地:總體均值為3,中位數(shù)為4

乙地:總體均值為1,總體方差大于0

丙地:中位數(shù)為2,眾數(shù)為3

丁地:總體均值為2,總體方差為3

【答案】

【解析】根據(jù)信息可知,連續(xù)天內(nèi),每天的新增疑似病例不能有超過(guò)的數(shù),選項(xiàng)中,中位數(shù)為 ,可能存在大于的數(shù);同理,在選項(xiàng)中也有可能;選項(xiàng)中的總體方差大于,敘述不明確,如果數(shù)目太大,也有可能存在大于的數(shù);選項(xiàng)中,根據(jù)方差公式,如果有大于的數(shù)存在,那么方差就大于,故答案選④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體中, 為線段上的動(dòng)點(diǎn),則下列判斷錯(cuò)誤的是( )

A. 平面 B. 平面

C. D. 三棱錐的體積與點(diǎn)位置有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】田忌和齊王賽馬是歷史上有名的故事,設(shè)齊王的三匹馬分別為A1,A2,A3;田忌的三匹馬分別為B1,B2,B3;三匹馬各比賽一次,勝兩場(chǎng)者獲勝,雙方均不知對(duì)方的馬出場(chǎng)順序.

(1)若這六匹馬比賽優(yōu)、劣程度可以用不等式表示:A1>B1>A2>B2>A3>B3,則田忌獲勝的概率是多大?

(2)若這六匹馬比賽優(yōu)、劣程度可以用不等式表示:A1>B1>A2>B2>B3>A3,則田忌獲勝的概率是多大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】.某校從高二年級(jí)學(xué)生中隨機(jī)抽取40名學(xué)生,將他們的期中考試數(shù)學(xué)成績(jī)(滿分100分,成績(jī)均為不低于40分的整數(shù))分成六段:[40,50),[50,60),[90,100]后得到如圖所示的頻率分布直方圖.

(1)求圖中實(shí)數(shù)a的值;

(2)若該校高二年級(jí)共有學(xué)生640人,試估計(jì)該校高二年級(jí)期中考試數(shù)學(xué)成績(jī)不低于60分的學(xué)生人數(shù);

(3)若從數(shù)學(xué)成績(jī)?cè)赱40,50)與[90,100]兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取兩名學(xué)生,求這兩名學(xué)生的數(shù)學(xué)成績(jī)之差的絕對(duì)值不大于10的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】獵人在相距100 m處射擊一野兔,命中的概率為,若第一次未擊中,則獵人進(jìn)行第二次射擊,但距離已是150 m,若又未擊中,則獵人進(jìn)行第三次射擊,但距離已是200 m,已知此獵人命中的概率與距離的平方成反比,求射擊不超過(guò)三次擊中野兔的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】二手車經(jīng)銷商小王對(duì)其所經(jīng)營(yíng)的某一型號(hào)二手汽車的使用年數(shù)x(0<x≤10)與銷售價(jià)格y(單位:萬(wàn)元/輛)進(jìn)行整理,得到如表的對(duì)應(yīng)數(shù)據(jù):

使用年數(shù)

2

4

6

8

10

售價(jià)

16

13

9.5

7

4.5


(1)試求y關(guān)于x的回歸直線方程;(參考公式: = , =y﹣
(2)已知每輛該型號(hào)汽車的收購(gòu)價(jià)格為w=0.01x3﹣0.09x2﹣1.45x+17.2萬(wàn)元,根據(jù)(1)中所求的回歸方程,預(yù)測(cè)x為何值時(shí),小王銷售一輛該型號(hào)汽車所獲得的利潤(rùn)L(x)最大?(利潤(rùn)=售價(jià)﹣收購(gòu)價(jià))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐的底面是直角梯形, , ,

,點(diǎn)在線段上,且, 平面.

1)求證:平面平面;

2)當(dāng)四棱錐的體積最大時(shí),求四棱錐的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且

(1)證明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次水下考古活動(dòng)中,某一潛水員需潛水50米到水底進(jìn)行考古作業(yè),其用氧量包含以下三個(gè)方面:

①下潛平均速度為米/分鐘,每分鐘的用氧量為升;

②水底作業(yè)時(shí)間范圍是最少10分鐘最多20分鐘,每分鐘用氧量為0.3升;

③返回水面時(shí),平均速度為米/分鐘,每分鐘用氧量為0.32升;潛水員在此次考古活動(dòng)中的總用氧量為升.

(1)如果水底作業(yè)時(shí)間是10分鐘,將表示為的函數(shù);

(2)若,水底作業(yè)時(shí)間為20分鐘,求總用氧量的取值范圍;

(3)若潛水員攜帶氧氣13.5升,請(qǐng)問(wèn)潛水員最多在水下多少分鐘(結(jié)果取整數(shù))?

查看答案和解析>>

同步練習(xí)冊(cè)答案