如圖,直三棱柱中,,,D是AC的中點.
(Ⅰ)求證:平面;
(Ⅱ)求幾何體的體積.
(Ⅰ)詳見解析; (Ⅱ).
解析試題分析:(Ⅰ)利用線線平行證明線面平行,抓住直線PD∥B1A達到證明AB1∥平面BC1D;(Ⅱ)采用體積分割技巧,將所求的幾何體轉(zhuǎn)化為直三棱柱的體積簡單兩個三棱錐的體積.
試題解析:(Ⅰ)連接B1C交BC1于點P,連接PD.
由于BB1C1C是平行四邊形,所以P為為B1C的中點
因為D為AC的中點,所以直線PD∥B1A,
又PDÌ平面B1CD,B1AË平面BC1D,
所以AB1∥平面BC1D. 6分
(Ⅱ)直三棱柱ABC-A1B1C1的體積V1=×2×2×2=4.
三棱錐C1-BDC的體積V2與三棱錐A1-BDA的體積V3相等,
V2=V3=×××2×2×2=.
所以幾何體BDA1B1C1的體積V=V1-V2-V3=. 12分
考點:1.平行關(guān)系的證明與判斷;2.幾何體的體積.
科目:高中數(shù)學 來源: 題型:解答題
已知斜三棱柱的底面是直角三角形, ,側(cè)棱與底面所成角為,點在底面上的射影落在上.
(1)求證:平面;
(2)若,且當時,求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在四棱錐中,側(cè)面底面,,為中點,底面是直角梯形,,,,.
(1)求證:面;
(2)求證:面面;
(3)設(shè)為棱上一點,,試確定的值使得二面角為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,四棱柱中,平面.
(Ⅰ)從下列①②③三個條件中選擇一個做為的充分條件,并給予證明;
①,②;③是平行四邊形.
(Ⅱ)設(shè)四棱柱的所有棱長都為1,且為銳角,求平面與平面所成銳二面角的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,邊長為a的正方形ABCD中,點E、F分別在AB、BC上,且,將△AED、△CFD分別沿DE、DF折起,使A、C兩點重合于點,連結(jié)A¢B.
(Ⅰ)判斷直線EF與A¢D的位置關(guān)系,并說明理由;
(Ⅱ)求二面角F-A¢B-D的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
正方形的邊長為2,分別為邊的中點,是線段的中點,如圖,把正方形沿折起,設(shè).
(1)求證:無論取何值,與不可能垂直;
(2)設(shè)二面角的大小為,當時,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com