已知△OAB的頂點(diǎn)坐標(biāo)為O(0,0),A(2,9),B(6,-3),點(diǎn)P的橫坐標(biāo)為14,且數(shù)學(xué)公式,點(diǎn)Q是邊AB上一點(diǎn),且數(shù)學(xué)公式
(1)求實(shí)數(shù)λ的值與點(diǎn)P的坐標(biāo);
(2)求點(diǎn)Q的坐標(biāo);
(3)若R為線段OQ上的一個(gè)動(dòng)點(diǎn),試求數(shù)學(xué)公式的取值范圍.

解:(1)設(shè)P(14,y),則,由,得(14,y)=λ(-8,-3-y),解得,所以點(diǎn)P(14,-7).
(2)設(shè)點(diǎn)Q(a,b),則,又,則由,得3a=4b①又點(diǎn)Q在邊AB上,所以,即3a+b-15=0②
聯(lián)立①②,解得a=4,b=3,所以點(diǎn)Q(4,3).
(3)因?yàn)镽為線段OQ上的一個(gè)動(dòng)點(diǎn),故設(shè)R(4t,3t),且0≤t≤1,則,,,則=,故的取值范圍為
分析:(1)先設(shè)P(14,y),分別表示,然后由,建立關(guān)于y的方程可求y.
(2)先設(shè)點(diǎn)Q(a,b),則可表示向量,由,可得3a=4b,再由點(diǎn)Q在邊AB上可得①②,從而可解a,b,進(jìn)而可得Q的坐標(biāo).
(3)由R為線段OQ上的一個(gè)動(dòng)點(diǎn)可設(shè)R(4t,3t),且0≤t≤1,則有分別表示,,由向量的數(shù)量積整理可得,利用二次函數(shù)的知識(shí)可求取值范圍.
點(diǎn)評(píng):平面向量與函數(shù)的綜合問題中,向量的數(shù)量積、向量的平行一般是作為轉(zhuǎn)化的基本工具,最后轉(zhuǎn)化為函數(shù)的問題,二次函數(shù)在閉區(qū)間上的最值是求解是函數(shù)性質(zhì)應(yīng)用中容易出現(xiàn)錯(cuò)誤的地方.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△OAB的頂點(diǎn)坐標(biāo)為O(0,0),A(2,9),B(6,-3),點(diǎn)P的橫坐標(biāo)為14,且
OP
PB
,點(diǎn)Q是邊AB上一點(diǎn),且
OQ
AP
=0

(1)求實(shí)數(shù)λ的值與點(diǎn)P的坐標(biāo);
(2)求點(diǎn)Q的坐標(biāo);
(3)若R為線段OQ上的一個(gè)動(dòng)點(diǎn),試求
RO
•(
RA
+
RB
)
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:0103 期末題 題型:解答題

已知△OAB的頂點(diǎn)坐標(biāo)為O(0,0),A(2,9),B(6,-3), 點(diǎn)P的橫坐標(biāo)為14,且,點(diǎn)Q是邊AB上一點(diǎn),且。
(Ⅰ)求實(shí)數(shù)λ的值與點(diǎn)P的坐標(biāo);
(Ⅱ)求點(diǎn)Q的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知△OAB的頂點(diǎn)坐標(biāo)為O(0,0),A(2,9),B(6,-3),點(diǎn)P的橫坐標(biāo)為14,且
OP
PB
,點(diǎn)Q是邊AB上一點(diǎn),且
OQ
AP
=0

(1)求實(shí)數(shù)λ的值與點(diǎn)P的坐標(biāo);
(2)求點(diǎn)Q的坐標(biāo);
(3)若R為線段OQ上的一個(gè)動(dòng)點(diǎn),試求
RO
•(
RA
+
RB
)
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省蘇州市常熟市高一(上)期末數(shù)學(xué)模擬試卷(解析版) 題型:解答題

已知△OAB的頂點(diǎn)坐標(biāo)為O(0,0),A(2,9),B(6,-3),點(diǎn)P的橫坐標(biāo)為14,且,點(diǎn)Q是邊AB上一點(diǎn),且
(1)求實(shí)數(shù)λ的值與點(diǎn)P的坐標(biāo);
(2)求點(diǎn)Q的坐標(biāo);
(3)若R為線段OQ上的一個(gè)動(dòng)點(diǎn),試求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案