已知函數(shù)的圖象經(jīng)過原點,且關(guān)于點(-1,1)成中心對稱.
(1)求函數(shù)f(x)的解析式;
(2)若數(shù)列{an}滿足an>0,a1=1,,求數(shù)列{an}的通項公式;
(3)在(2)的條件下,設(shè)數(shù)列{an}的前n項和為Sn,試判斷Sn與2的大小關(guān)系,并證明你的結(jié)論.
【答案】分析:(1)f(0)=0,可求b=0.所以.由函數(shù)圖象關(guān)于點(-1,1)成中心對稱,可求a
(2)因為,且an>0,整理可得.從而得到數(shù)列是等差數(shù)列,可求
(3)由n≥2時,,從而放縮結(jié)合裂項求和即可求
解答:解:(1)因為函數(shù)的圖象經(jīng)過原點,
所以f(0)=0,即b=0.所以
因為函數(shù)的圖象關(guān)于點(-1,1)成中心對稱,
所以a=1.所以
(2)因為,且an>0,
所以,即,即
所以數(shù)列是首項為,公差為1的等差數(shù)列.
所以,所以(n∈N*).
(3)當n=1時,S1=a1=1<2;
當n≥2時,,
所以
綜上所述,Sn<2(n∈N*).
點評:本題以函數(shù)中由函數(shù)的性質(zhì)求解函數(shù)解析式為載體,重點考查了利用構(gòu)造特殊數(shù)列(等差、等比)求解數(shù)列的通項公式,及裂項求和,要注意放縮法在解題中的應(yīng)用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2009-2010學年廣東省深圳市北大附中南山分校高二(上)期中數(shù)學試卷1(理科)(解析版) 題型:解答題

已知函數(shù)的圖象經(jīng)過原點,且關(guān)于點(-1,1)成中心對稱.
(1)求函數(shù)f(x)的解析式;
(2)若數(shù)列{an}滿足an>0,a1=1,,求數(shù)列{an}的通項公式;
(3)在(2)的條件下,設(shè)數(shù)列{an}的前n項和為Sn,試判斷Sn與2的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年廣東省廣州市高考數(shù)學查漏補缺試卷(理科)(解析版) 題型:解答題

已知函數(shù)的圖象經(jīng)過原點,且關(guān)于點(-1,1)成中心對稱.
(1)求函數(shù)f(x)的解析式;
(2)若數(shù)列{an}滿足an>0,a1=1,,求數(shù)列{an}的通項公式;
(3)在(2)的條件下,設(shè)數(shù)列{an}的前n項和為Sn,試判斷Sn與2的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆浙江省高二第一次月考理科數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)的圖象經(jīng)過原點,取得極大值2。

(1)求函數(shù)的解析式;

(2)若對任意的,求的最大值。

 

查看答案和解析>>

科目:高中數(shù)學 來源:新課標高三數(shù)學組合、排列與組合的綜合問題專項訓練(河北) 題型:解答題

已知函數(shù)的圖象經(jīng)過原點,取得極大值2。

(1)求函數(shù)的解析式;

(2)若對任意的,求的最大值。

 

查看答案和解析>>

同步練習冊答案