【題目】某公司計劃投資開發(fā)一種新能源產(chǎn)品,預(yù)計能獲得10萬元1000萬元的收益.現(xiàn)準(zhǔn)備制定一個對開發(fā)科研小組的獎勵方案:獎金(單位:萬元)隨收益(單位:萬元)的增加而增加,且獎金總數(shù)不超過9萬元,同時獎金總數(shù)不超過收益的.
(Ⅰ)若建立獎勵方案函數(shù)模型,試確定這個函數(shù)的定義域、值域和的范圍;
(Ⅱ)現(xiàn)有兩個獎勵函數(shù)模型:①;②.試分析這兩個函數(shù)模型是否符合公司的要求?請說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,四邊形ABCD是直角梯形,,,,M是棱PC上一點(diǎn),且,平面MBD.
(1)求實(shí)數(shù)λ的值;
(2)若平面平面ABCD,為等邊三角形,且三棱錐P-MBD的體積為2,求PA的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,等腰梯形ABCD中,AB∥CD,AD=AB=BC=1,CD=2,E為CD中點(diǎn),AE與BD交于點(diǎn)O,將△ADE沿AE折起,使點(diǎn)D到達(dá)點(diǎn)P的位置(P平面ABCE).
(Ⅰ)證明:平面POB⊥平面ABCE;
(Ⅱ)若直線PB與平面ABCE所成的角為,求二面角A-PE-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓錐的頂點(diǎn)為S,底面圓O的兩條直徑分別為AB和CD,且AB⊥CD,若平面平面.現(xiàn)有以下四個結(jié)論:
①AD∥平面SBC;
②;
③若E是底面圓周上的動點(diǎn),則△SAE的最大面積等于△SAB的面積;
④與平面SCD所成的角為45°.
其中正確結(jié)論的序號是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班對一次實(shí)驗(yàn)成績進(jìn)行分析,利用隨機(jī)數(shù)表法抽取樣本時,先將50個同學(xué)按01,02.03,…50進(jìn)行編號,然后從隨機(jī)數(shù)表第9行第11列的數(shù)開始向右讀,則選出的第6個個體是( )(注:表為隨機(jī)數(shù)表的第8行和第9行)
63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
A.00B.13C.42D.44
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)討論函數(shù)的單調(diào)性;
(2)若存在與函數(shù),的圖象都相切的直線,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,圓的方程為.
(1)若圓上有兩點(diǎn),關(guān)于直線對稱,且,求直線的方程;
(2)圓與軸相交于,兩點(diǎn),圓內(nèi)的動點(diǎn)使,,成等比數(shù)列,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為有效促進(jìn)我市體育產(chǎn)業(yè)和旅游產(chǎn)業(yè)有機(jī)融合,提高我市的知名度,更好地宣傳萍鄉(xiāng)武功山,并通過賽事向社會各界傳播健康、低碳、綠色、環(huán)保的運(yùn)動理念。在今年9月21日第九屆環(huán)鄱陽湖國際自行車大賽第九站比賽在我市武功山舉行。在這次89.5公里的自行車個人賽中,其中25名參賽選手的成績(單位:分鐘)的莖葉圖如圖所示:
14 | 0 | 1 | 2 | 3 | 5 | 6 | 6 | 6 | 6 | 8 | 9 |
15 | 0 | 2 | 3 | 4 | 5 | 5 | 5 | 7 | 9 | ||
16 | 0 | 0 | 5 | 6 | 7 |