【題目】已知橢圓:
的離心率
,左、右焦點(diǎn)分別是
、
,且橢圓上一動(dòng)點(diǎn)
到
的最遠(yuǎn)距離為
,過(guò)
的直線(xiàn)
與橢圓
交于
,
兩點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng)以
為直角時(shí),求直線(xiàn)
的方程;
(3)直線(xiàn)的斜率存在且不為0時(shí),試問(wèn)
軸上是否存在一點(diǎn)
使得
,若存在,求出
點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)(2)直線(xiàn)
的方程為
或
(3)存在,
【解析】
(1)由橢圓的離心率
,且橢圓上一動(dòng)點(diǎn)
到
的最遠(yuǎn)距離為
,列出方程組,求得
的值,即可得到橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線(xiàn):
,則
:
,聯(lián)立方程組,求得
的值,即可求得直線(xiàn)的方程;
(3)設(shè):
,聯(lián)立方程組,根據(jù)根與系數(shù)的關(guān)系,求得
,
,再由斜率公式和以
,即可求解點(diǎn)
的坐標(biāo),得到答案.
(1)由題意,橢圓的離心率
,且橢圓上一動(dòng)點(diǎn)
到
的最遠(yuǎn)距離為
,
可得,解得
,所以橢圓的標(biāo)準(zhǔn)方程為
.
(2)由題意可知,當(dāng)不存在時(shí),
不符合題意.
設(shè)直線(xiàn):
,則
:
,
∴,得
,∴
∴,
,∴
,
直線(xiàn)的方程為
或
.
(3)設(shè),
,
,
:
,
∴
,
∴,
,
∵,
,所以
,
∴,∴
,
∴,
,∴
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列中,已知
,
對(duì)任意
都成立,數(shù)列
的前n項(xiàng)和為
.
(1)若是等差數(shù)列,求k的值;
(2)若,
,求
;
(3)是否存在實(shí)數(shù)k,使數(shù)列是公比不為1的等比數(shù)列,且任意相鄰三項(xiàng)
,
,
按某順序排列后成等差數(shù)列?若存在,求出所有k的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)列中,
,且
.
(1)的通項(xiàng)公式為__________;
(2)在、
、
、
、
這
項(xiàng)中,被
除余
的項(xiàng)數(shù)為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),其中
,若
、
、
是
的三條邊長(zhǎng),則下列結(jié)論:①對(duì)于一切
都有
;②存在
使
、
、
不能構(gòu)成一個(gè)三角形的三邊長(zhǎng);③
為鈍角三角形,存在
,使
,其中正確的個(gè)數(shù)為______個(gè)
A. 3B. 2C. 1D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,圓
的參數(shù)方程為
(
是參數(shù),
是大于0的常數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,圓
的極坐標(biāo)方程為
.
(1)求圓的極坐標(biāo)方程和圓
的直角坐標(biāo)方程;
(2)分別記直線(xiàn):
,
與圓
、圓
的異于原點(diǎn)的交點(diǎn)為
,
,若圓
與圓
外切,試求實(shí)數(shù)
的值及線(xiàn)段
的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,
為正三角形,
為棱
的中點(diǎn),
,
,平面
平面
(1)求證:平面平面
;
(2)若是棱
上一點(diǎn),
與平面
所成角的正弦值為
,求二面角
的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙三家企業(yè)產(chǎn)品的成本分別為10000,12000,15000,其成本構(gòu)成如下圖所示,則關(guān)于這三家企業(yè)下列說(shuō)法錯(cuò)誤的是( )
A.成本最大的企業(yè)是丙企業(yè)B.費(fèi)用支出最高的企業(yè)是丙企業(yè)
C.支付工資最少的企業(yè)是乙企業(yè)D.材料成本最高的企業(yè)是丙企業(yè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市有東、西、南、北四個(gè)進(jìn)入城區(qū)主干道的入口,在早高峰時(shí)間段,時(shí)常發(fā)生交通擁堵,交警部門(mén)記錄了11月份30天內(nèi)的擁堵情況(如下表所示,其中●表示擁堵,○表示通暢).假設(shè)每個(gè)人口是否發(fā)生擁堵相互獨(dú)立,將各入口在這30天內(nèi)擁堵的頻率代替各入口每天擁堵的概率.
11.1 | 11.2 | 11.3 | 11.4 | 11.5 | 11.6 | 11.7 | 11.8 | 11.9 | 11.10 | 11.11 | 11.12 | 11.13 | 11.14 | 11.15 | ||||||||||||||||
東入口 | ● | ○ | ○ | ○ | ○ | ● | ○ | ● | ● | ○ | ● | ● | ● | ○ | ● | |||||||||||||||
西入口 | ○ | ○ | ● | ● | ○ | ● | ○ | ● | ○ | ● | ○ | ● | ● | ○ | ○ | |||||||||||||||
南入口 | ○ | ● | ○ | ○ | ○ | ● | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ● | |||||||||||||||
北入口 | ● | ○ | ○ | ○ | ● | ○ | ○ | ● | ○ | ○ | ○ | ○ | ○ | ● | ○ | |||||||||||||||
11.16 | 11.17 | 11.18 | 11.19 | 11.20 | 11.21 | 11.22 | 11.23 | 11.24 | 11.25 | 11.26 | 11.27 | 11.28 | 11.29 | 11.30 | ||||||||||||||||
東入口 | ● | ○ | ○ | ● | ○ | ○ | p>○ | ● | ● | ○ | ● | ○ | ● | ○ | ● | |||||||||||||||
西入口 | ● | ○ | ● | ● | ○ | ● | ○ | ● | ○ | ● | ○ | ● | ○ | ● | ○ | |||||||||||||||
南入口 | ○ | ○ | ○ | ● | ○ | ○ | ○ | ○ | ● | ○ | ○ | ○ | ○ | ○ | ● | |||||||||||||||
北入口 | ○ | ○ | ● | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ● | ○ | |||||||||||||||
(1)分別求該城市一天中早高峰時(shí)間段這四個(gè)主干道的入口發(fā)生擁堵的概率.
(2)各人口一旦出現(xiàn)擁堵就需要交通協(xié)管員來(lái)疏通,聘請(qǐng)交通協(xié)管員有以下兩種方案可供選擇.方案一:四個(gè)主干道入口在早高峰時(shí)間段每天各聘請(qǐng)一位交通協(xié)管員,聘請(qǐng)每位交通協(xié)管員的日費(fèi)用為(
,且
)元.方案二:在早高峰時(shí)間段若某主干道入口發(fā)生擁堵,交警部門(mén)則需臨時(shí)調(diào)派兩位交通協(xié)管員協(xié)助疏通交通,調(diào)派后當(dāng)日需給每位交通協(xié)管員的費(fèi)用為200元.以四個(gè)主干道入口聘請(qǐng)交通協(xié)管員的日總費(fèi)用的數(shù)學(xué)期望為依據(jù),你認(rèn)為在這兩個(gè)方案中應(yīng)該如何選擇?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正項(xiàng)數(shù)列的前
項(xiàng)和為
,若
,
.
(1)證明:當(dāng)時(shí),
;
(2)求數(shù)列的通項(xiàng)公式;
(3)設(shè),求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com