【題目】已知函數(shù),.

1)證明:在區(qū)間上單調遞增;

2)若存在,使得的值域相同,求實數(shù)的取值范圍.

【答案】1)見解析;(2.

【解析】

1)求出,可證明恒成立,故可得上的增函數(shù).

2)先討論時的情形,此時可把的存在性問題轉化為存在兩個不同的零點問題,利用導數(shù)和零點存在定理可得.再討論的情形,利用兩個函數(shù)的函數(shù)值的符號可判定這種情況不成立,兩者結合可求的取值范圍.

1)因為,故

,故.

時,,故上為增函數(shù),

所以,

,故上的增函數(shù).

2)因為,故為增函數(shù),

上的值域為.

時,的值域為,故

所以有兩個不同的解.

,

有兩個不同的零點.

,

時,,

上的單調增函數(shù),

最多有一個解,舍去.

時,.

,,

,則,

為增函數(shù),

,

有且只有一個實數(shù)解.

,故為減函數(shù);

時,,故為增函數(shù);

.

,所以

因為有兩個不同的零點,

.

,其中,

,故上為減函數(shù),

故不等式的解為,

所以.

因為為開口向上的二次函數(shù),

故存在,使得當任意時,總有,

,故上為增函數(shù),

當對任意的時,總有 ,

因為,故當,,

根據(jù)零點存在定理,上有且只有一個零點.

因為有兩個不同的零點,故

所以,

,故,

所以.

時,上始終滿足,

由(1)可知為增函數(shù),故,

不符合題設要求,舍去.

綜上,.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】南宋數(shù)學家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項之差并不相等,但是逐項差數(shù)之差或者高次差成等差數(shù)列對這類高階等差數(shù)列的研究,在楊輝之后一般稱為垛積術”.現(xiàn)有高階等差數(shù)列,其前7項分別為1,4,8,14,23,36,54,則該數(shù)列的第19項為( )(注:

A.1624B.1024C.1198D.1560

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點在拋物線 上,直線 與拋物線交于, 兩點,且直線, 的斜率之和為-1.

(1)求的值;

(2)若,設直線軸交于點,延長與拋物線交于點,拋物線在點處的切線為,記直線, 軸圍成的三角形面積為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某快遞公司收取快遞費用的標準是:重量不超過的包裹收費10元;重量超過的包裹,除收費10元之外,超過的部分,每超出(不足,按計算)需要再收費5.該公司近60天每天攬件數(shù)量的頻率分布直方圖如下圖所示(同一組數(shù)據(jù)用該區(qū)間的中點值作代表).

1)求這60天每天包裹數(shù)量的平均值和中位數(shù);

2)該公司從收取的每件快遞的費用中抽取5元作為前臺工作人員的工資和公司利潤,剩余的作為其他費用.已知公司前臺有工作人員3人,每人每天工資100元,以樣本估計總體,試估計該公司每天的利潤有多少元?

3)小明打算將四件禮物隨機分成兩個包裹寄出,且每個包裹重量都不超過,求他支付的快遞費為45元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,.已知,分別是,的中點.將沿折起,使的位置且二面角的大小是.連接,,如圖:

(Ⅰ)求證:平面平面;

(Ⅱ)求平面與平面所成二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知平行四邊形中,,為邊的中點,將 沿直線翻折成.為線段的中點,則在翻折過程中,有下列三個命題:

①線段的長是定值;

②存在某個位置,使;

③存在某個位置,使平面.

其中正確的命題有______. (填寫所有正確命題的編號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校藝術節(jié)對四件參賽作品只評一件一等獎,在評獎揭曉前,甲,乙,丙,丁四位同學對這四件參賽作品預測如下:

甲說:作品獲得一等獎”; 乙說:作品獲得一等獎”;

丙說:兩件作品未獲得一等獎”; 丁說:作品獲得一等獎”.

評獎揭曉后,發(fā)現(xiàn)這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是_________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】直線與圓相交于兩點,的面積達到最大時,________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是某小區(qū)2017年1月至2018年1月當月在售二手房均價(單位:萬元/平方米)的散點圖.(圖中月份代碼1—13分別對應2017年1月—2018年1月)

由散點圖選擇兩個模型進行擬合,經(jīng)過數(shù)據(jù)處理得到兩個回歸方程分別為,并得到以下一些統(tǒng)計量的值:

殘差平方和

0.000591

0.000164

總偏差平方和

0.006050

(1)請利用相關指數(shù)判斷哪個模型的擬合效果更好;

(2)某位購房者擬于2018年6月份購買這個小區(qū)平方米的二手房(欲

購房為其家庭首套房).若購房時該小區(qū)所有住房的房產證均已滿2年但未滿5年,請你利用(1)中擬合效果更好的模型估算該購房者應支付的購房金額.(購房金額=房款+稅費;房屋均價精確到0.001萬元/平方米)

附注:根據(jù)有關規(guī)定,二手房交易需要繳納若干項稅費,稅費是按房屋的計稅價格進行征收.(計稅價格=房款),征收方式見下表:

契稅

(買方繳納)

首套面積90平方米以內(含90平方米)為1%;首套面積90平方米以上且144平方米以內(含144平方米)為1.5%;面積144平方米以上或非首套為3%

增值稅

(賣方繳納)

房產證未滿2年或滿2年且面積在144平方米以上(不含144平方米)為5.6%;其他情況免征

個人所得稅

(賣方繳納)

首套面積144平方米以內(含144平方米)為1%;面積144平方米以上或非首套均為1.5%;房產證滿5年且是家庭唯一住房的免征

參考數(shù)據(jù):,,,,,,,. 參考公式:相關指數(shù).

查看答案和解析>>

同步練習冊答案