對(duì)于一個(gè)函數(shù)f(x),如果對(duì)任意一個(gè)三角形,只要它的三邊長(zhǎng)a,b,c都在f(x)的定義域內(nèi),就有f(a),f(b),f(c)也是某個(gè)三角形的三邊長(zhǎng),則稱(chēng)f(x)為“保三角形函數(shù)”.則下列函數(shù):①f(x)=x②f(x)=x2③f(x)=sinx,x∈(0,
π
4
)④f(x)=cosx,x∈(0,
π
4
)是“保三角形函數(shù)”的是
①③④
①③④
(寫(xiě)出正確的序號(hào))
分析:欲判斷三個(gè)函數(shù)f(x)是不是“保三角形函數(shù)”,只須任給三角形,設(shè)它的三邊長(zhǎng)分別為a,b,c,則a+b>c,不妨假設(shè)a≤c,b≤c,我們判斷f(a),f(b),f(c)是否滿(mǎn)足任意兩數(shù)之和大于第三個(gè)數(shù),即任意兩邊之和大于第三邊即可.
解答:解:任給三角形,設(shè)它的三邊長(zhǎng)分別為a,b,c,則a+b>c,不妨假設(shè)a≤c,b≤c,
若f(x)=x由于f(a)+f(b)=a+b>c=f(c),所以f(x)=x是“保三角形函數(shù)”.
對(duì)于f(x)=x2,3,3,5可作為一個(gè)三角形的三邊長(zhǎng),但32+32<52,
所以不存在三角形以32,32,52為三邊長(zhǎng),故f3(x)不是“保三角形函數(shù)”.
對(duì)于f(x)=sinx,x∈(0,
π
4
),∴
π
2
>a+b>c>0,f(a)+f(b)=sina+sinb>sinc=f(c)
所以f(x)=sinx,x∈(0,
π
4
)是“保三角形函數(shù)”.
對(duì)于f(x)=cosx,x∈(0,
π
4
),a≤c,b≤c,cosb>cosc∴f(a)+f(b)=cosa+cosb>cosc=f(c)
所以f(x)=cosx,x∈(0,
π
4
)是“保三角形函數(shù)”.
故答案為:①③④
點(diǎn)評(píng):要想判斷f(x)為“保三角形函數(shù)”,要經(jīng)過(guò)嚴(yán)密的論證說(shuō)明f(x)滿(mǎn)足“保三角形函數(shù)”的概念,但要判斷f(x)不為“保三角形函數(shù)”,僅須要舉出一個(gè)反例即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義一:對(duì)于一個(gè)函數(shù)f(x)(x∈D),若存在兩條距離為d的直線(xiàn)y=kx+m1和y=kx+m2,使得在x∈D時(shí),kx+m1≤f(x)≤kx+m2 恒成立,則稱(chēng)函數(shù)f(x)在D內(nèi)有一個(gè)寬度為d的通道.
定義二:若一個(gè)函數(shù)f(x),對(duì)于任意給定的正數(shù)?,都存在一個(gè)實(shí)數(shù)x0,使得函數(shù)f(x)在[x0,+∞)內(nèi)有一個(gè)寬度為?的通道,則稱(chēng)f(x)在正無(wú)窮處有永恒通道.下列函數(shù):
①f(x)=lnx,②f(x)=
sinx
x
,③f(x)=
x2-1 
,④f(x)=x2,⑤f(x)=e-x
其中在正無(wú)窮處有永恒通道的函數(shù)的序號(hào)是
②③⑤
②③⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:對(duì)于一個(gè)函數(shù)f(x)(x∈D),若存在兩條距離為d的直線(xiàn)y=kx+m1和y=kx+m2,使得在x∈D時(shí),kx+m1≤f(x)≤kx+m2恒成立,則稱(chēng)函數(shù)f(x)在D內(nèi)有一個(gè)寬度為d的通道.下列函數(shù):①f(x)=e-x,②f(x)=sinx,③f(x)=
x2-1
,④f(x)=x2,其中在[1,+∞)有一個(gè)寬度為1的通道的函數(shù)的序號(hào)是
①③
①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年遼寧省沈陽(yáng)二中高三(上)10月月考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

定義一:對(duì)于一個(gè)函數(shù)f(x)(x∈D),若存在兩條距離為d的直線(xiàn)y=kx+m1和y=kx+m2,使得在x∈D時(shí),kx+m1≤f(x)≤kx+m2 恒成立,則稱(chēng)函數(shù)f(x)在D內(nèi)有一個(gè)寬度為d的通道.
定義二:若一個(gè)函數(shù)f(x),對(duì)于任意給定的正數(shù)?,都存在一個(gè)實(shí)數(shù)x,使得函數(shù)f(x)在[x,+∞)內(nèi)有一個(gè)寬度為?的通道,則稱(chēng)f(x)在正無(wú)窮處有永恒通道.下列函數(shù):
①f(x)=lnx,②f(x)=,③f(x)=,④f(x)=x2,⑤f(x)=e-x,
其中在正無(wú)窮處有永恒通道的函數(shù)的序號(hào)是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年四川省成都市石室中學(xué)高三(上)10月月考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

定義:對(duì)于一個(gè)函數(shù)f(x)(x∈D),若存在兩條距離為d的直線(xiàn)y=kx+m1和y=kx+m2,使得在x∈D時(shí),kx+m1≤f(x)≤kx+m2恒成立,則稱(chēng)函數(shù)f(x)在D內(nèi)有一個(gè)寬度為d的通道.下列函數(shù):①f(x)=e-x,②f(x)=sinx,③,④f(x)=x2,其中在[1,+∞)有一個(gè)寬度為1的通道的函數(shù)的序號(hào)是   

查看答案和解析>>

同步練習(xí)冊(cè)答案