精英家教網(wǎng)已知E,F(xiàn),G,H分別是空間四邊形ABCD的邊AB,BC,CD,DA的中點(diǎn).
(1)用向量法證明E,F(xiàn),G,H(2)四點(diǎn)共面;
(2)用向量法證明:BD∥平面EFGH;
(3)設(shè)M是EG和FH的交點(diǎn),求證:對(duì)空間任一點(diǎn)O,有
OM
=
1
4
(
OA
+
OB
+
OC
+
OD
)
分析:(1)用向量的加法求出
EG
=
EF
+
EH
,即可證明E,F(xiàn),G,H(2)四點(diǎn)共面;
(2)用向量表示
EH
=
1
2
BD
,就證明EH∥BD,又EH?面EFGH,BD不在 面EFGH,所以BD∥平面EFGH;
(3)M是EG和FH的交點(diǎn),利用
EH
=
1
2
BD
推出EG、FH交于一點(diǎn)M且被M平分,然后推出
OM
=
1
4
(
OA
+
OB
+
OC
+
OD
)
解答:證明:(1)連接BG,則
EG
=
EB
+
BG
=
EB
+
1
2
(
BC
+
BD
)
=
EB
+
BF
+
EH
=
EF
+
EH

由共面向量定理的推論知:E、F、G、H四點(diǎn)共面,(其中
1
2
BD
=
EH

(2)因?yàn)?span id="qkkmekc" class="MathJye">
EH
=
AH
-
AE
1
2
AD
-
1
2
AB
 =
1
2
(
AD
-
AB
)=
1
2
BD

所以EH∥BD,又EH?面EFGH,BD不在 面EFGH
所以BD∥平面EFGH.
(3)連接OM,OA,OB,OC,OD,OE,OG
由(2)知
EH
=
1
2
BD
,同理
FG
=
1
2
BD
,所以
EH
=
FG

EH∥FG,EH=FG,所以EG、FH交于一點(diǎn)M且被M平分,
所以
OM
=
1
2
(
OE
+
OG
)=
1
2
[
1
2
(
OA
+
OB
)+
1
2
(
OC
+
OD
)]

=
1
4
(
OA
+
OB
+
OC
+
OD
)
點(diǎn)評(píng):本題考查向量語言表述線面的垂直、平行關(guān)系,共線向量與共面向量,考查運(yùn)算能力,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知E、F、G、H分別是空間四邊形ABCD的邊AB,BC,CD,DA的中點(diǎn).
(1)證明E,F(xiàn),G,H四點(diǎn)共面;
(2)證明BD∥平面EFGH.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正方體AC1中,已知E、F、G、H分別是CC1、BC、CD和A1C1的中點(diǎn).證明:
(1)AB1∥GE,AB1⊥EH;
(2)A1G⊥平面EFD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知E、F、G、H分別是空間四邊形ABCDAB、BC、CDDA的中點(diǎn).

(1)用向量法證明E、F、G、H四點(diǎn)共面;

(2)用向量法證明BD∥平面EFGH.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年蘇教版高中數(shù)學(xué)選修2-1 3.1空間向量及其坐標(biāo)運(yùn)算練習(xí)卷(解析版) 題型:解答題

已知E、F、G、H分別是空間四邊形ABCD的邊AB、BC、CD、DA的中點(diǎn),

(1)求證:E、F、G、H四點(diǎn)共面;

(2)求證:BD∥平面EFGH;

(3)設(shè)M是EG和FH的交點(diǎn),求證:對(duì)空間任一點(diǎn)O,有=+++).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案