將參數(shù)方程
x=2+sin2θ
y=sin2θ
(θ為參數(shù))化為普通方程為
 
考點(diǎn):參數(shù)方程化成普通方程
專題:坐標(biāo)系和參數(shù)方程
分析:把y=sin2θ代入x=2+sin2θ可得x=2+y(0≤y≤1).
解答: 解:由參數(shù)方程
x=2+sin2θ
y=sin2θ
(θ為參數(shù)),
把y=sin2θ代入x=2+sin2θ得x=2+y(0≤y≤1).即y=x-2(2≤x≤3).
故答案為:y=x-2(2≤x≤3).
點(diǎn)評(píng):本題考查了參數(shù)方程化為普通方程的方法,考查了三角函數(shù)的單調(diào)性和有界性,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=log2(2x-x2).且關(guān)于x的方程2f(x)=kx+1有兩個(gè)不相等的實(shí)根x1、x2
(1)求f(x)的定義域;
(2)求k的取值范圍M;
(3)是否存在實(shí)數(shù)n,使得不等式n2+n+1>2|x1-x2|對(duì)任意的k∈M恒成立?若存在,求出n的取值范圍,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l過(guò)雙曲線C:3x2-y2=9的右頂點(diǎn),且與雙曲線C的一條漸近線平行.若拋物線x2=2py(p>0)的焦點(diǎn)恰好在直線l上,則p=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(
x+1
x
)=x4+
1
x4
,x∈R,則函數(shù)f(x)的遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

F1、F2為橢圓的兩個(gè)焦點(diǎn),過(guò)F2的直線交橢圓于A、B兩點(diǎn),AF1⊥AB,且|AF1|=|AB|,則橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,P,Q是面對(duì)角線A1C1上的兩個(gè)不同動(dòng)點(diǎn).給出以下判斷:
①存在P,Q兩點(diǎn),使BP⊥DQ;
②存在P,Q兩點(diǎn),使BP∥DQ;
③若|PQ|=1,則四面體BDPQ的體積一定是定值;
④若|PQ|=1,則四面體BDPQ的表面積是定值.
⑤若|PQ|=1,則四面體BDPQ在該正方體六個(gè)面上的正投影的面積的和為定值.
其中真命題是
 
.(將正確命題的序號(hào)全填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)已知函數(shù)f(x)的定義域?yàn)閧1,2,3},值域?yàn)榧蟵1,2,3,4}的非空真子集,設(shè)點(diǎn)A(1,f(1)),B(2,f(2)),C(3,f(3)),△ABC的外接圓圓心為M,且
MA
+
MC
MB
(λ∈R),滿足條件的函數(shù)f(x)有
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,P,Q是面對(duì)角線A1C1上的兩個(gè)不同動(dòng)點(diǎn).給出以下判斷:
①存在P,Q兩點(diǎn),使BP⊥DQ;
②存在P,Q兩點(diǎn),使BP,DQ與直線B1C1都成45°的角;
③若|PQ|=1,則四面體BDPQ的體積一定是定值;
④若|PQ|=1,則四面體BDPQ的表面積是定值.
⑤若|PQ|=1,則四面體BDPQ在該正方體六個(gè)面上的正投影的面積的和為定值.
其中真命題是
 
.(將正確命題的序號(hào)全填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1F2是橢圓C1
x2
9
+
y2
5
=1與雙曲線C2的公共焦點(diǎn),點(diǎn)P是曲線C1與C2的一個(gè)公共點(diǎn),且|
OP
|=
61
3
(其中點(diǎn)O為坐標(biāo)原點(diǎn)),則雙曲線C2離心率為(  )
A、
2
B、
3
2
C、2
D、
2
3
3

查看答案和解析>>

同步練習(xí)冊(cè)答案