在△ABC中,角A,B,C所對(duì)邊的長(zhǎng)分別為a,b,c.已知a+
2
c=2b,sinB=
2
sinC,則cosA=
 
考點(diǎn):余弦定理,正弦定理
專(zhuān)題:解三角形
分析:利用正弦定理化簡(jiǎn)已知第二個(gè)等式得到b=
2
c,代入第一個(gè)等式表示出a,利用余弦定理表示出cosA,將表示出的b與a代入計(jì)算即可求出值.
解答: 解:將sinB=
2
sinC利用正弦定理化簡(jiǎn)得:b=
2
c,
代入a+
2
c=2b中得a+
2
c=2
2
c,即a=
2
c,
∴cosA=
b2+c2-a2
2bc
=
2c2+c2-2c2
2
2
c2
=
2
4

故答案為:
2
4
點(diǎn)評(píng):此題考查了正弦、余弦定理,熟練掌握定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a∈R,且a≥1,函數(shù)f(x)=ax||x|-a|.
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)若x∈[-2,2]時(shí),f(x)的最大值為g(a),求出g(a)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓心為C的圓經(jīng)過(guò)點(diǎn) A(1,1)和B(2,-2),且圓心C在 直線(xiàn)L:x-y+1=0上,求圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x2+2x-3,
(1)求f(x)>0的解集;
(2)求f(2a+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某同學(xué)用“五點(diǎn)法”畫(huà)函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|<
π
2
)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入的部分?jǐn)?shù)據(jù)如下表:
xx1
1
3
x2
7
3
x3
ωx+ϕ0
π
2
π
2
Asin(ωx+ϕ)0
3
0-
3
0
(Ⅰ)請(qǐng)寫(xiě)出上表的x1、x2、x3,并直接寫(xiě)出函數(shù)的解析式;
(Ⅱ)將f(x)的圖象沿x軸向右平移
2
3
個(gè)單位得到函數(shù)g(x)的圖象,P、Q分別為函數(shù)g(x)圖象的最高點(diǎn)和最低點(diǎn)(如圖),求∠OQP的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

二維空間中圓的一維測(cè)度(周長(zhǎng))l=2πr,二維測(cè)度(面積)S=πr2;三維空間中球的二維測(cè)度(表面積)S=4πr2,三維測(cè)度(體積)V=
4
3
πr3;四維空間中“超球”的三維測(cè)度V=8πr3,則猜想其四維測(cè)度W=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=Asin(ωx+φ),(A,ω,φ是常數(shù),A>0,ω>0)的部分圖象如圖所示,則f(0)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是一個(gè)算法的流程圖,則最后輸出W的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一次數(shù)學(xué)測(cè)試某班分?jǐn)?shù)統(tǒng)計(jì)如下,請(qǐng)你計(jì)算該班同學(xué)成績(jī)的方差s2=
 

分?jǐn)?shù)5060708090100
人數(shù)251013146

查看答案和解析>>

同步練習(xí)冊(cè)答案