【題目】某超市銷售某種商品,據(jù)統(tǒng)計,該該商品每日的銷售量(單位:千克)與銷售價格(單位:元/千克,其中)滿足:當時,為常數(shù));當時,,已知當銷售價格為6/千克時,每日售出該商品170千克.

1)求的值,并確定關(guān)于的函數(shù)解析式;

2)若該商品的銷售成本為3/千克,試確定銷售價格的值,使店鋪每日銷售該商品所獲利潤最大.

【答案】1,;(2)銷售價格為5/千克時,每日利潤最大所獲利潤,最大

【解析】

1)由題意,代入數(shù)據(jù)求出,;從而求出函數(shù)的解析式;

2)由于是分段函數(shù),討論其各部分的最大值,從而求函數(shù)的最大值點.

1)因為時,;又時,

,解得.

故每日的銷售量.

2)由(1)知,當時,每日銷售利潤

.

時,單調(diào)遞增;

時,單調(diào)遞減;

是函數(shù)上的唯一極大值點,

;

時,每日銷售利潤,

.

,∴銷售價格為5/千克時,每日利潤最大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動點到定點的距離比到軸的距離多.

1)求動點的軌跡的方程;

2)設(shè),是軌跡上異于原點的兩個不同點,直線的傾斜角分別為,當,變化且時,證明:直線恒過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】密云某商場舉辦春節(jié)優(yōu)惠酬賓贈券活動,購買百元以上單件商品可以使用優(yōu)惠劵一張,并且每天購物只能用一張優(yōu)惠券.一名顧客得到三張優(yōu)惠券,三張優(yōu)惠券的具體優(yōu)惠方式如下:

優(yōu)惠券1:若標價超過50元,則付款時減免標價的10%;

優(yōu)惠券2:若標價超過100元,則付款時減免20元;

優(yōu)惠券3:若標價超過100元,則超過100元的部分減免18%

如果顧客需要先用掉優(yōu)惠券1,并且使用優(yōu)惠券1比使用優(yōu)惠券2、優(yōu)惠券3減免的都多,那么你建議他購買的商品的標價可以是__________元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】秉承“綠水青山就是金山銀山”的發(fā)展理念,某市環(huán)保部門通過制定評分標準,先對本市的企業(yè)進行評估,評出四個等級,并根據(jù)等級給予相應(yīng)的獎懲,如下表所示:

評估得分

評定等級

不合格

合格

良好

優(yōu)秀

獎勵(萬元)

環(huán)保部門對企業(yè)評估完成后,隨機抽取了家企業(yè)的評估得分(分)為樣本,得到如下頻率分布表:

評估得分

頻率

其中表示模糊不清的兩個數(shù)字,但知道樣本評估得分的平均數(shù)是.

1)現(xiàn)從樣本外的數(shù)百個企業(yè)評估得分中隨機抽取個,若以樣本中頻率為概率,求該家企業(yè)的獎勵不少于萬元的概率;

2)現(xiàn)從樣本“不合格”、“合格”、“良好”三個等級中,按分層抽樣的方法抽取家企業(yè),再從這家企業(yè)隨機抽取家,求這兩家企業(yè)所獲獎勵之和不少于萬元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正四面體中,在平面內(nèi),點是線段的中點,在該四面體繞旋轉(zhuǎn)的過程中,直線與平面所成角的余弦值不可能是(

A.B.C.D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年末,武漢出現(xiàn)新型冠狀病毒肺炎()疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大.武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從27日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和與確診患者的密切接觸者等“四類”人員,強化網(wǎng)格化管理,不落一戶、不漏一人.在排查期間,一戶6口之家被確認為“與確診患者的密切接觸者”,這種情況下醫(yī)護人員要對其家庭成員隨機地逐一進行“核糖核酸”檢測,若出現(xiàn)陽性,則該家庭為“感染高危戶”.設(shè)該家庭每個成員檢測呈陽性的概率均為)且相互獨立,該家庭至少檢測了5個人才能確定為“感染高危戶”的概率為,當時,最大,則

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某建筑工地搭建的腳手架局部類似于一個3×2×3的長方體框架,一個建筑工人欲從A處沿腳手架攀登至B處,則其最近的行走路線中不連續(xù)向上攀登的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位準備購買三臺設(shè)備,型號分別為已知這三臺設(shè)備均使用同一種易耗品,提供設(shè)備的商家規(guī)定:可以在購買設(shè)備的同時購買該易耗品,每件易耗品的價格為100元,也可以在設(shè)備使用過程中,隨時單獨購買易耗品,每件易耗品的價格為200.為了決策在購買設(shè)備時應(yīng)購買的易耗品的件數(shù).該單位調(diào)查了這三種型號的設(shè)備各60臺,調(diào)査每臺設(shè)備在一個月中使用的易耗品的件數(shù),并得到統(tǒng)計表如下所示.

每臺設(shè)備一個月中使用的易耗品的件數(shù)

6

7

8

型號A

30

30

0

頻數(shù)

型號B

20

30

10

型號C

0

45

15

將調(diào)查的每種型號的設(shè)備的頻率視為概率,各臺設(shè)備在易耗品的使用上相互獨立.

1)求該單位一個月中三臺設(shè)備使用的易耗品總數(shù)超過21件的概率;

2)以該單位一個月購買易耗品所需總費用的期望值為決策依據(jù),該單位在購買設(shè)備時應(yīng)同時購買20件還是21件易耗品?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD為矩形,點A、E、B、F共面,且均為等腰直角三角形,且90°.

(Ⅰ)若平面ABCD平面AEBF,證明平面BCF平面ADF;

(Ⅱ)問在線段EC上是否存在一點G,使得BG∥平面CDF,若存在,求出此時三棱錐G-ABE與三棱錐G-ADF的體積之比.

查看答案和解析>>

同步練習(xí)冊答案