在矩形ABCD中,AB=4,BC=3,沿AC將矩形ABCD折成一個直二面角B-AC-D,則四面體ABCD的外接球的體積為( )
A.π
B.π
C.π
D.π
【答案】分析:球心到球面各點的距離相等,即可知道外接球的半徑,就可以求出其體積了.
解答:解:由題意知,球心到四個頂點的距離相等,
所以球心在對角線AC上,且其半徑為AC長度的一半,
則V=π×(3=
故選C.
點評:本題考查學(xué)生的思維意識,對球的結(jié)構(gòu)和性質(zhì)的運用,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AB=3
3
,BC=3,沿對角線BD將BCD折起,使點C移到點C′,且C′在平面ABD的射影O恰好在AB上
(1)求證:BC′⊥面ADC′;
(2)求二面角A-BC′-D的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,已知AD=2,AB=a(a>2),E、F、G、H分別是邊AD、AB、BC、CD上的點,若AE=AF=CG=CH,問AE取何值時,四邊形EFGH的面積最大?并求最大的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知在矩形ABCD中,||=.設(shè)=a, =b, =c,求|a+b+c|.

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�