【題目】已知方程(m2﹣2m﹣3)x+(2m2+m﹣1)y+5﹣2m=0(m∈R).
(1)求方程表示一條直線的條件;
(2)當(dāng)m為何值時(shí),方程表示的直線與x軸垂直;
(3)若方程表示的直線在兩坐標(biāo)軸上的截距相等,求實(shí)數(shù)m的值.

【答案】
(1)解:由 ,得:m=﹣1

∵方程(m2﹣2m﹣3)x+(2m2+m﹣1)y+5﹣2m=0(m∈R)表示直線

∴m2﹣2m﹣3、2m2+m﹣1不同時(shí)為0,∴m≠﹣1


(2)解:方程表示的直線與x軸垂直,∴ ,∴
(3)解:當(dāng)5﹣2m=0,即 時(shí),直線過原點(diǎn),在兩坐標(biāo)軸上的截距均為0

當(dāng) 時(shí),由 得:m=﹣2


【解析】(1)由 ,得:m=﹣1,方程(m2﹣2m﹣3)x+(2m2+m﹣1)y+5﹣2m=0(m∈R)表示直線,可得m2﹣2m﹣3、2m2+m﹣1不同時(shí)為0,即可得出.(2)方程表示的直線與x軸垂直,可得 ,(3)當(dāng)5﹣2m=0,即 時(shí),直線過原點(diǎn),在兩坐標(biāo)軸上的截距均為0.當(dāng) 時(shí),由 ,解得:m.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用一般式方程的相關(guān)知識可以得到問題的答案,需要掌握直線的一般式方程:關(guān)于的二元一次方程(A,B不同時(shí)為0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小王為了鍛煉身體,每天堅(jiān)持“健步走”,并用計(jì)步器進(jìn)行統(tǒng)計(jì).小王最近8天“健步走”步數(shù)的頻數(shù)分布直方圖(圖1)及相應(yīng)的消耗能量數(shù)據(jù)表(表1)如下:

健步走步數(shù)(前步)

16

17

18

19

消耗能量(卡路里)

400

440

480

520

(Ⅰ)求小王這8天“健步走”步數(shù)的平均數(shù);
(Ⅱ)從步數(shù)為17千步,18千步,19千步的幾天中任選2天,求小王這2天通過“健步走”消耗的能量和不小于1000卡路里的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知圓M的圓心在直線y=﹣2x上,且圓M與直線x+y﹣1=0相切于點(diǎn)P(2,﹣1).
(1)求圓M的方程;
(2)過坐標(biāo)原點(diǎn)O的直線l被圓M截得的弦長為 ,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了考查培育的某種植物的生長情況,從試驗(yàn)田中隨機(jī)抽取100柱該植物進(jìn)行檢測,得到該植物高度的頻數(shù)分布表如下:

組序

高度區(qū)間

頻數(shù)

頻率

1

[230,235)

14

0.14

2

[235,240)

0.26

3

[240,245)

0.20

4

[245,250)

30

5

[250,255)

10

合計(jì)

100

1.00

(Ⅰ)寫出表中①②③④處的數(shù)據(jù);
(Ⅱ)用分層抽樣法從第3、4、5組中抽取一個(gè)容量為6的樣本,則各組應(yīng)分別抽取多少個(gè)個(gè)體?
(Ⅲ)在(Ⅱ)的前提下,從抽出的容量為6的樣本中隨機(jī)選取兩個(gè)個(gè)體進(jìn)行進(jìn)一步分析,求這兩個(gè)個(gè)體中至少有一個(gè)來自第3組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 已知S2=4,an+1=2Sn+1,n∈N*
(1)求通項(xiàng)公式an;
(2)求數(shù)列{|an﹣n﹣2|}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)△ABC的三內(nèi)角A、B、C成等差數(shù)列,sinA、sinB、sinC成等比數(shù)列,則這個(gè)三角形的形狀是(
A.直角三角形
B.鈍角三角形
C.等腰直角三角形
D.等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=﹣2,an+1=2an+4.
(1)證明數(shù)列{an+4}是等比數(shù)列并求出{an}通項(xiàng)公式;
(2)若 ,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求函數(shù)的最小值;

(2)若函數(shù)上單調(diào),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,在邊長為24的正方形中,點(diǎn)在邊上,且, ,分別交于點(diǎn)分別交于點(diǎn)將該正方形沿折疊,使得重合,構(gòu)成如圖2所示的三棱柱.

(1)求證: 平面

(2)求多面體的體積.

查看答案和解析>>

同步練習(xí)冊答案