電視劇《華羅庚》中有一個(gè)鏡頭:華羅庚少年時(shí)代用心算法解出了“孫子算經(jīng)”中的難題,原文是:“今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二,問物幾何?學(xué)曰:二十三.”即一個(gè)正整數(shù),被3,5,7除,余數(shù)分別為2,3,2.“孫子算經(jīng)”解法的口訣是:“三人同行七十稀,五樹梅花二十一,其子團(tuán)圓正月豐,除百零五便得知.”

這個(gè)算法又叫“韓信點(diǎn)兵”.相傳韓信才略過人,領(lǐng)兵打仗時(shí),為了對(duì)敵方保密,從不點(diǎn)自己軍隊(duì)的人數(shù),只是讓他的士兵以三人一排很快地從他面前過去,再以五人一排走一次,最后以七人一排走過去,由于隊(duì)伍走得很快,別人根本來不及數(shù)有多少人.然而韓信只對(duì)各隊(duì)士兵的最后一排掠一眼,就知道總數(shù)了,他利用的就是上面的這個(gè)口訣,你能理解這個(gè)口訣嗎?

求解“孫子問題”的算法有很多,你能想出什么樣的算法?

答案:
解析:

  解:程序框圖如圖.

  程序:

  m=1

  DO

  r1=m MOD 3

  r2=m MOD 5

  r3=m MOD 7

  m=m+1

  LOOP UNTIL   r1=2And  r2=3And  r3=2

  PRINT m

  END


提示:

  我們只介紹一種普通的算法.

  “孫子問題”相當(dāng)于求關(guān)于x、y、z的不定方程組

  設(shè)所求的數(shù)為m,根據(jù)題意m應(yīng)同時(shí)滿足下列三個(gè)條件:

  m MOD 3=2,

  m MOD 5=3,

  m MOD 7=2,

  讓m從2開始檢驗(yàn),若三個(gè)條件同時(shí)滿足,則m即為所求.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

電視劇《華羅庚》中有一個(gè)鏡頭:華羅庚少年時(shí)代用心算法解出了“孫子算經(jīng)”中的難題,原文是:“今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二,問物幾何?學(xué)曰:二十三.”即一個(gè)正整數(shù),被3,5,7除,余數(shù)分別為2,3,2.“孫子算經(jīng)”解法的口訣是:“三人同行七十稀,五樹梅花二十一,其子團(tuán)圓正月豐,除百零五便得知.”

    這個(gè)算法又叫“韓信點(diǎn)兵”.相傳韓信才略過人,領(lǐng)兵打仗時(shí),為了對(duì)敵方保密,從不點(diǎn)自己軍隊(duì)的人數(shù),只是讓他的士兵以三人一排很快地從他面前過去,再以五人一排走一次,最后以七人一排走過去,由于隊(duì)伍走得很快,別人根本來不及數(shù)有多少人.然而韓信只對(duì)各隊(duì)士兵的最后一排掠一眼,就知道總數(shù)了,他利用的就是上面的這個(gè)口訣,你能理解這個(gè)口訣嗎?

    求解“孫子問題”的算法有很多,你能想出什么樣的算法?

   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

電視劇《華羅庚》中有一個(gè)鏡頭:華羅庚少年時(shí)代用心算法解出了“孫子算經(jīng)”中的難題,原文是:“今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二,問物幾何?學(xué)曰:二十三.”即一個(gè)正整數(shù),被3,5,7除,余數(shù)分別為2,3,2.“孫子算經(jīng)”解法的口訣是:“三人同行七十稀,五樹梅花二十一,其子團(tuán)圓正月豐,除百零五便得知.”

    這個(gè)算法又叫“韓信點(diǎn)兵”.相傳韓信才略過人,領(lǐng)兵打仗時(shí),為了對(duì)敵方保密,從不點(diǎn)自己軍隊(duì)的人數(shù),只是讓他的士兵以三人一排很快地從他面前過去,再以五人一排走一次,最后以七人一排走過去,由于隊(duì)伍走得很快,別人根本來不及數(shù)有多少人.然而韓信只對(duì)各隊(duì)士兵的最后一排掠一眼,就知道總數(shù)了,他利用的就是上面的這個(gè)口訣.

    畫出程序框圖,并編寫程序解決“韓信點(diǎn)兵”問題.

查看答案和解析>>

同步練習(xí)冊(cè)答案