【題目】江蘇省南京師大附中2018屆高三高考考前模擬考試數(shù)學(xué)試題已知函數(shù)f(x)=lnx-ax+a,aR.

(1)若a=1,求函數(shù)f(x)的極值;

(2)若函數(shù)f(x)有兩個(gè)零點(diǎn),求a的范圍;

(3)對(duì)于曲線y=f(x)上的兩個(gè)不同的點(diǎn)P(x1,f(x1)),Q(x2,f(x2)),記直線PQ的斜率為k,若y=f(x)的導(dǎo)函數(shù)為f ′(x),證明:f ′()<k.

【答案】(1)見(jiàn)解析(2)(3)見(jiàn)解析

【解析】分析:(1)求極值可先求導(dǎo)分析函數(shù)的單調(diào)區(qū)間從而確定極值點(diǎn)求極值;(2)由(1)可知當(dāng)a≤0時(shí),f(x)(0,+∞)上單調(diào)增,不可能有兩個(gè)零點(diǎn);故只需討論當(dāng)a0時(shí)的零點(diǎn)情況,當(dāng)a0時(shí),函數(shù)有極大值, x0),求導(dǎo)分析單調(diào)性結(jié)合零點(diǎn)定理進(jìn)行證明即可;(3)由斜率計(jì)算公式得 ,而 看成一個(gè)整體構(gòu)造函數(shù)),分析其最大值即可.

解:(1),,

當(dāng)時(shí),,上單調(diào)遞增,無(wú)極值;

當(dāng)時(shí), ,上單調(diào)遞增;

,上單調(diào)遞減,

函數(shù)有極大值,無(wú)極小值.

(2)由(span>1)可知當(dāng)a≤0時(shí),f(x)(0,+∞)上單調(diào)增,不可能有兩個(gè)零點(diǎn);

當(dāng)a>0時(shí),函數(shù)有極大值

(x>0),

,,(0,1)上單調(diào)遞減;

,,(1,+∞)上單調(diào)遞增,

函數(shù)有最小值

要使若函數(shù)有兩個(gè)零點(diǎn)時(shí),必須滿足,

下面證明時(shí),函數(shù)有兩個(gè)零點(diǎn).

因?yàn)?/span>,

所以下面證明還有另一個(gè)零點(diǎn).

①當(dāng)時(shí),,

,

(),,

上單調(diào)遞減,,則,

所以上有零點(diǎn),又上單調(diào)遞減,

所以上有惟一零點(diǎn),從而有兩個(gè)零點(diǎn).

②當(dāng)時(shí),,

,

易證,可得,

所以上有零點(diǎn),又上單調(diào)遞減,

所以上有惟一零點(diǎn),從而有兩個(gè)零點(diǎn).

綜上,的范圍是

(3)證明:,

,

不妨設(shè)0<x2<x1, t=,則t>1,

),

,

因此h(t)(1,+∞)上單調(diào)遞減,所以h(t)<h(1)=0.

0<x2<x1,所以x1-x2>0,

所以f ′()-k<0,即f ′()<k.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某連鎖經(jīng)營(yíng)公司所屬5個(gè)零售店某月的銷售額和利潤(rùn)額資料如下表:

商店名稱

銷售額/千萬(wàn)元

3

5

6

7

9

利潤(rùn)額/百萬(wàn)元

2

3

3

4

5

(1)畫出銷售額和利潤(rùn)額的散點(diǎn)圖;

(2)若銷售額和利潤(rùn)額具有相關(guān)關(guān)系,用最小二乘法計(jì)算利潤(rùn)額對(duì)銷售額的回歸直線方程;

(3)據(jù)(2)的結(jié)果估計(jì)當(dāng)銷售額為4千萬(wàn)元時(shí)的利潤(rùn)額.

(附:線性回歸方程:,,)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某輿情機(jī)構(gòu)為了解人們對(duì)某事件的關(guān)注度,隨機(jī)抽取了人進(jìn)行調(diào)查,其中女性中對(duì)該事件關(guān)注的占,而男性有人表示對(duì)該事件沒(méi)有關(guān)注.

關(guān)注

沒(méi)關(guān)注

合計(jì)

合計(jì)

(1)根據(jù)以上數(shù)據(jù)補(bǔ)全列聯(lián)表;

(2)能否有的把握認(rèn)為“對(duì)事件是否關(guān)注與性別有關(guān)”?

(3)已知在被調(diào)查的女性中有名大學(xué)生,這其中有名對(duì)此事關(guān)注.現(xiàn)在從這名女大學(xué)生中隨機(jī)抽取人,求至少有人對(duì)此事關(guān)注的概率.

附表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,摩天輪的半徑為,點(diǎn)距地面的高度為,摩天輪按逆時(shí)針?lè)较蜃鲃蛩龠\(yùn)動(dòng),且每轉(zhuǎn)一圈,摩天輪上點(diǎn)的起始位置在最高點(diǎn).

(1)試確定點(diǎn)距離地面的高度(單位:)關(guān)于旋轉(zhuǎn)時(shí)間(單位:)的函數(shù)關(guān)系式;

(2)在摩天輪轉(zhuǎn)動(dòng)一圈內(nèi),有多長(zhǎng)時(shí)間點(diǎn)距離地面超過(guò)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),求滿足的取值:

(2)若函數(shù)是定義在上的奇函數(shù)

①存在,不等式有解,求的取值范圍;

②若函數(shù)滿足,若對(duì)任意,不等式恒成立,求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知 ,,且函數(shù)的圖像上的任意兩條對(duì)稱軸之間的距離的最小值是.

1)求的值:

(2)將函數(shù)的圖像向右平移單位后,得到函數(shù)的圖像,求函數(shù)上的最值,并求取得最值時(shí)的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.己知

點(diǎn)的極坐標(biāo)為,曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為,為參數(shù)).曲線和曲線相交于兩點(diǎn).

(1)求點(diǎn)的直角坐標(biāo);

(2)求曲線的直角坐標(biāo)方程和曲線的普通方程;

(3)求的面枳,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若在區(qū)間上是單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍;

(2)若處有極值10,求的值;

(3)若對(duì)任意的,有恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a>0,b>0,函數(shù)f(x)=|x+a|+|2x﹣b|的最小值為1.
(1)求證:2a+b=2;
(2)若a+2b≥tab恒成立,求實(shí)數(shù)t的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案