已知直線經(jīng)過(guò)橢圓C:的左頂點(diǎn)A和上頂點(diǎn)D,橢圓C的右頂點(diǎn)為B,點(diǎn)S是橢圓C上位于x軸上方的動(dòng)點(diǎn),直線AS,BS與直線分別交于M,N兩點(diǎn),如圖所示。
(1)求橢圓C的方程;
(2)求線段MN的長(zhǎng)度的最小值;
(3)當(dāng)線段MN的長(zhǎng)度的最小時(shí),在橢圓C上是否存在這樣的點(diǎn)T,使得△TSB的面積為?若存在,確定點(diǎn)T的個(gè)數(shù),若不存在,請(qǐng)說(shuō)明理由。
解:(1)由題意,得橢圓方程為
(2)設(shè)直線AS的方程為,
從而可知M點(diǎn)的坐標(biāo)為
,得,
所以可得BS的方程為
從而可知N點(diǎn)的坐標(biāo)為,
,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,
故當(dāng)時(shí),線段MN的長(zhǎng)度取最小值。
(3)由(2)知,當(dāng)|MN|取最小值時(shí),
此時(shí)直線BS的方程為,,
∴|BS|=,
要使橢圓C上存在點(diǎn)T,使得△TSB的面積等于,只需T到直線BS的距離等于,
所以點(diǎn)T在平行于直線BS且與直線BS的距離等于的直線上。

則直線,
聯(lián)立,,△<0,無(wú)解;
,△=44>0,有兩個(gè)解;
所以T有兩個(gè)。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
1
2
,且經(jīng)過(guò)點(diǎn)(1,
3
2
)

(1)求橢圓C的方程;
(2)已知A為橢圓C的左頂點(diǎn),直線l過(guò)右焦點(diǎn)F與橢圓C交于M,N兩點(diǎn),若AM、AN的斜率k1,k2滿足k1+k2=m(定值m≠0),求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線經(jīng)過(guò)橢圓 w.w.w.k.s.5.u.c.o.m    的左頂點(diǎn)A和上頂點(diǎn)D,橢圓的右頂點(diǎn)為,點(diǎn)和橢圓上位于軸上方的動(dòng)點(diǎn),直線,與直線分別交于兩點(diǎn)。

   (I)求橢圓的方程;

   (Ⅱ)求線段MN的長(zhǎng)度的最小值;

   (Ⅲ)當(dāng)線段MN的長(zhǎng)度最小時(shí),在橢圓上是否存在這

樣的點(diǎn),使得的面積為?若存在,確定點(diǎn)的個(gè)數(shù),若不存在,說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)(解析版) 題型:解答題

(本小題滿分14分)

已知直線經(jīng)過(guò)橢圓S:的一個(gè)焦點(diǎn)和一個(gè)頂點(diǎn).

(1)求橢圓S的方程;

(2)如圖,M,N分別是橢圓S的頂點(diǎn),過(guò)坐標(biāo)原點(diǎn)的直線交橢圓于P、A兩點(diǎn),其中P在第一象限,過(guò)P作軸的垂線,垂足為C,連接AC,并延長(zhǎng)交橢圓于點(diǎn)B,設(shè)直線PA的斜率為k.

①若直線PA平分線段MN,求k的值;

②對(duì)任意,求證:

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分14分)已知直線經(jīng)過(guò)橢圓的左頂點(diǎn)A和上頂點(diǎn)D,橢圓C的右頂點(diǎn)為B,點(diǎn)P是橢圓C上位于軸上方的動(dòng)點(diǎn),直線AP,BP與直線分別交于M,N兩點(diǎn).

(1)求橢圓C的方程;

(2)求線段MN的長(zhǎng)度的最小值;

(3)當(dāng)線段MN的長(zhǎng)度最小時(shí),Q點(diǎn)在橢圓上運(yùn)動(dòng),記△BPQ的面積為S,當(dāng)S在上變化時(shí),討論S的大小與Q點(diǎn)的個(gè)數(shù)之間的關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案