與圓,圓同時外切的動圓圓心的軌跡方程是_____________。
解析試題分析:根據(jù)題意可知,設(shè)動圓的圓心為P,半徑為r,
而圓(x-3)2+y2=9的圓心為M1(3,0),半徑為3;
圓(x+3)2+y2=1的圓心為M2(-3,0),半徑為1
依題意得|PM1|=3+r,|PM2|=1+r,
則|PM1|-|PM2|=(3+r)-(1+r)=2<|M1M2|,
所以點P的軌跡是雙曲線的右支.
且:a=1,c=3,b2=8
其方程是:,。答案為
考點:本題主要考查了查雙曲線的定義.本題考查的知識點是圓的方程、橢圓的性質(zhì)及橢圓與直線的關(guān)系。
點評:解題的關(guān)鍵是根據(jù)已知條件中未知圓與已知圓的位置關(guān)系,結(jié)合“圓的位置關(guān)系與半徑及圓心距的關(guān)系”,探究出動圓圓心P的軌跡,進而給出動圓圓心P的軌跡方程.
科目:高中數(shù)學(xué) 來源: 題型:填空題
在平面直角坐標(biāo)系中,圓的方程為,若直線上至少存在一點,使得以該點為圓心,1為半徑的圓與圓有公共點,則的最大值是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com