已知數(shù)列
1
3
cos0,
1
32
cos
π
2
,
1
33
cosπ,…,
1
3n
cos
(n-1)π
2
,…,則該數(shù)列的所有項之和為( 。
A、
1
4
B、
1
2
C、
3
10
D、
3
8
考點:數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列,三角函數(shù)的求值
分析:利用cos
(n+4-1)π
2
=cos
(n-1)π
2
,cos0=1,cos
π
2
=0,cosπ=-1,cos
2
=0.可得該數(shù)列為:
1
3
,0,-
1
33
,0,….利用公比|q|<1的等比數(shù)列的極限=
a1
1-q
即可得出.
解答: 解:∵cos
(n+4-1)π
2
=cos
(n-1)π
2
,cos0=1,cos
π
2
=0,cosπ=-1,cos
2
=0.
∴該數(shù)列為:
1
3
,0,-
1
33
,0,….
∴該數(shù)列的所有項之和為=
1
3
1-(-
1
9
)
=
3
10

故選:C.
點評:本題考查了余弦函數(shù)的周期性、數(shù)列極限的計算方法,考查了推理能力與計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,若
AB
•(
AB
-2
AC
)=0,則△ABC的形狀為 ( 。
A、直角三角形
B、等腰三角形
C、等邊三角形
D、等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

討論下列函數(shù)的奇偶性:
(1)f(x)=3-5x2
(2)g(x)=2x2-x+1
(3)f(x)=x(x2+1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}中,a1=-3,a1a2a3=729
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{
1
an
}的前n項和為Tn,證明:Tn≤-
2
9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知P是圓O外一點,PE切圓O于點E,B、F是圓O上一點,PB交圓O于A點,EF∥AP,BE:BF=3:4,PE=4,則AB=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對某班學生是更喜歡體育還是更喜歡文娛進行調查,根據(jù)調查得到的數(shù)據(jù),所繪制的二維條形圖如圖.
(Ⅰ)根據(jù)圖中數(shù)據(jù),制作2×2列聯(lián)表;
(Ⅱ)若要從更愛好文娛和從更愛好體育的學生中各選一人分別做文體活動協(xié)調人,求選出的兩人恰好是一男一女的概率;
(Ⅲ)在多大程度上可以認為性別與是否更喜歡體育有關系?參考公式Χ2=
n(ad-bc)2
(a+c)(b+d)(a+b)(c+d)

參考數(shù)據(jù):
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
   k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓心為C的圓方程是x2+y2-2y+m=0.
(1)如果圓C與直線y=0沒有公共點,求實數(shù)m的取值范圍;
(2)如果圓C過坐標原點,直線l過點P(0,a)(0≤a≤2),且與圓C交于A,B兩點,當△ABC的面積最大時,求直線l的斜率k關于a的解析式k(a),并求k(a)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為了得到函數(shù)y=cos(2x-
π
3
)的圖象,可以將函數(shù)y=-sin2x的圖象( 。
A、向左平移
π
12
個單位
B、向右平移
π
12
個單位
C、向左平移
12
個單位
D、向右平移
12
個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=4x的焦點為F,準線為直線l,過拋物線上一點P作PE⊥l,若直線EF的傾斜角為120°,則|PF|=
 

查看答案和解析>>

同步練習冊答案