,(x>0,y>0,常數(shù)a,b>0且a≠b),

求證:x+y≥

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)過點(diǎn)P(x,y)的直線分別與x軸的正半軸和y軸的正半軸交于A,B兩點(diǎn),點(diǎn)Q與點(diǎn)P關(guān)于y軸對稱,O為坐標(biāo)原點(diǎn),若
BP
=2
PA
OQ
AB
=1
,則點(diǎn)P的軌跡方程是( 。
A、3x2+
3
2
y2=1(x>0,y>0)
B、3x2-
3
2
y2=1(x>0,y>0)
C、
3
2
x2-3y2=1(x>0,y>0)
D、
3
2
x2+3y2=1(x>0,y>0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)過點(diǎn)P(x,y)的直線分別與x軸的正半軸和y軸的正半軸交于A、B兩點(diǎn),點(diǎn)Q與點(diǎn)P關(guān)于x軸對稱,O為坐標(biāo)原點(diǎn),若
BP
=2
PA
,且
OQ
AB
=-3
,則P點(diǎn)的軌跡方程是(  )
A、3x2+
3
2
y2=1(x>0,y>0)
B、
x2
2
+y2=1(x>0,y>0)
C、
x2
2
-y2=1(x>0,y>0)
D、x2+
y2
2
=1(x>0,y>0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間直角坐標(biāo)系O-xyz中,
OP
=x
i
+y
j
+z
k
(其中
i
,
j
k
分別為x軸、y軸、z軸正方向上的單位向量).有下列命題:
①若
OP
=x
i
+y
j
+0
k
(x>0,y>0)
且|
OP
-4
j
|=|
OP
+2
i
|
,則
1
x
+
2
y
的最小值為2
2

②若
OP
=0
i
+y
j
+z
k
,
OQ
=0
i
+y1
j
+
k
,若向量
PQ
k
共線且|
PQ
|=|
OP
|,則動(dòng)點(diǎn)P的軌跡是拋物線;
③若
OM
=a
i
+0
j
+0
k
OQ
=0
i
+b
j
+0
k
,
OR
=0
i
+0
j
+c
k
(abc≠0)
,則平面MQR內(nèi)的任意一點(diǎn)A(x,y,z)的坐標(biāo)必須滿足關(guān)系式
x
a
+
y
b
+
z
c
=1;
④設(shè)
OP
=x
i
+y
j
+0
k
(x∈[0,4],y∈[-4,4])
,
OM
=0
i
+y1
j
+
k
(y1∈[-4,4])
,
ON
=x2
i
+0
j
+0
k
(x2∈[0,4])
,若向量
PM
j
,
PN
j
共線且|
PM
|=|
PN
|,則動(dòng)點(diǎn)P的軌跡是雙曲線的一部分.
其中你認(rèn)為正確的所有命題的序號為
②③④
②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若對x>0,y>0有(x+2y)(
2
x
+
1
y
)≥m
恒成立,m的取值范圍是
(-∞,8]
(-∞,8]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)設(shè)過點(diǎn)P(x,y)的直線分別與x軸的正半軸和y軸的正半軸交于A,B兩點(diǎn),點(diǎn)Q與點(diǎn)P關(guān)于y軸對稱,O為坐標(biāo)原點(diǎn),若
BP
=3
PA
(
1
2
OQ
)•(
1
2
AB
)=1
,則點(diǎn)P的軌跡方程是(  )
A、x2+
y2
3
=1(x>0,y>0)
B、x2-
y2
3
=1(x>0,y>0)
C、
x2
3
-y2=1(x>0,y>0)
D、
x2
3
+y2=1(x>0,y>0)

查看答案和解析>>

同步練習(xí)冊答案