已知公差不為0的等差數(shù)列{an}的前n項(xiàng)和為Sn,S3=a4+4,且a1,a2,a4成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{
1
Sn
}的前n項(xiàng)和公式.
考點(diǎn):數(shù)列的求和,等比數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ)由已知條件利用等差數(shù)列通項(xiàng)公式和前n項(xiàng)和公式和等比數(shù)列的性質(zhì)求出首項(xiàng)和公差,由此能求出an=2n.
(Ⅱ)由an=2n知Sn=
(2+2n)×n
2
=n(n+1)
1
Sn
=
1
n(n+1)
=
1
n
-
1
n+1
,由此利用裂項(xiàng)求和法能求出數(shù)列{
1
Sn
}的前n項(xiàng)和公式.
解答: (本小題滿分12分)
解:(Ⅰ)設(shè)等差數(shù)列{an}的公差為d≠0.
因?yàn)镾3=a4+4,
所以3a1+
3×2×d
2
=a1+3d+4
.①
因?yàn)閍1,a2,a4成等比數(shù)列,
所以a1(a1+3d)=(a1+d)2.②…(5分)
由①,②可得:a1=2,d=2.…(6分)
所以an=2n.…(7分)
(Ⅱ)由an=2n可知:Sn=
(2+2n)×n
2
=n(n+1)
.…(9分)
所以
1
Sn
=
1
n(n+1)
=
1
n
-
1
n+1
.…(11分)
所以
1
S1
+
1
S2
+
1
S3
+…+
1
Sn-1
+
1
Sn

=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1

=1-
1
n+1
=
n
n+1

所以數(shù)列{
1
Sn
}
的前n項(xiàng)和為
n
n+1
.…(12分)
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)公式的求法,考查數(shù)列的前n項(xiàng)和公式的求法,解題時(shí)要認(rèn)真審題,注意裂項(xiàng)求和法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b∈R,若矩陣A=
-1a
b3
所對(duì)應(yīng)的變換TA把直線l:2x-y=3變換為它自身.
(Ⅰ)求矩陣A;
(Ⅱ)求矩陣A的逆矩陣.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某學(xué)校參加數(shù)學(xué)競(jìng)賽學(xué)生成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見(jiàn)部分如圖所示,據(jù)此解答如下問(wèn)題:

(1)求參加數(shù)學(xué)競(jìng)賽人數(shù)n及分?jǐn)?shù)在[80,90),[90,100]之間的人數(shù);
(2)若要從分?jǐn)?shù)在[80,100]之間的學(xué)生中任選兩人進(jìn)行某項(xiàng)研究,求至多有一人分?jǐn)?shù)在[80,90)之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(Ⅰ)若點(diǎn)P(x,y)在曲線|x|+|y|=1上(xy≠0),求證:
x2
|y|
+
y2
|x|
≥1.
(Ⅱ)已知CD為△ABC外接圓的切線,AB的延長(zhǎng)線交CD于點(diǎn)D,點(diǎn)E,F(xiàn)分別在弦AB與弦AC上,且BC•AE=DC•AF,B,E,F(xiàn),C四點(diǎn)共圓,證明:△ABC是直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+ax+b,a,b∈R的圖象記為曲線E,過(guò)一點(diǎn)A(
1
2
,-
3
8
)作曲線E的切線,這樣的切線有且僅有兩條.
(Ⅰ)求a+2b的值;
(Ⅱ)若點(diǎn)A在曲線E上,對(duì)任意的x∈[0,1],求證:f(x)+|a+3b+1|+
1
2
≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+c,若f(1)=0,f′(1)=0,但x=1不是函數(shù)f(x)的極值點(diǎn),則abc的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知各項(xiàng)為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,
a
=(Sn,an+1),
b
=(an+1,4)且
a
b

(1)求an;
(2)設(shè)函數(shù)f(n)=
an , n為奇數(shù)
f(
n
2
),  n為偶數(shù)
,cn=f(2n+4)(n∈N*),求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={x∈R||x-1|≤2},集合N={x∈R|(x+2)(x-1)>0},則M∩N=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)直線x-ay-1=0被圓(x-1)2+(y-2)2=4截得的弦長(zhǎng)為2
3
,則實(shí)數(shù)a的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案