【題目】已知橢圓的兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)是等邊三角形的三個(gè)頂點(diǎn),且長(zhǎng)軸長(zhǎng)為4.

(1)求橢圓的方程;

(2)是橢圓的左頂點(diǎn),經(jīng)過左焦點(diǎn)的直線與橢圓交于,兩點(diǎn),求的面積之差的絕對(duì)值的最大值.為坐標(biāo)原點(diǎn)

【答案】(1);(2)的最大值為.

【解析】

試題分析:(1)首先由離心率的概念可得,然后由長(zhǎng)軸長(zhǎng)可得的值,進(jìn)而可得出所求的結(jié)果;(2)首先設(shè)的面積為的面積為,并分兩類討論:直線斜率不存在和直線斜率存在,分別聯(lián)立直線與橢圓的方程并表達(dá)出,然后結(jié)合基本不等式求解其最大值即可得出所求的結(jié)果.

試題解析:(1)由題意得,又,則,所以.

,故橢圓的方程為.

(2)設(shè)的面積為,的面積為.

當(dāng)直線斜率不存在時(shí),直線方程為,此時(shí)不妨設(shè),,面積相等,.

當(dāng)直線斜率存在時(shí),設(shè)直線方程為,設(shè),,

和橢圓方程聯(lián)立得,消掉.

顯然,方程有根,且.

此時(shí).

因?yàn)?/span>,所以上式時(shí)等號(hào)成立.

所以的最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于數(shù)列,為數(shù)列是前項(xiàng)和,且,.

(1)求數(shù)列,的通項(xiàng)公式;

(2)令,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)生在開學(xué)季準(zhǔn)備銷售一種文具盒進(jìn)行試創(chuàng)業(yè),在一個(gè)開學(xué)季內(nèi),每售出1盒該產(chǎn)品獲利潤(rùn)50元,未售出的產(chǎn)品,每盒虧損30元.根據(jù)歷史資料,得到開學(xué)季市場(chǎng)需求量的頻率分布直方圖,如圖所示.該同學(xué)為這個(gè)開學(xué)季購(gòu)進(jìn)了160盒該產(chǎn)品,以(單位:盒,)表示這個(gè)開學(xué)季內(nèi)的市場(chǎng)需求量,(單位:元)表示這個(gè)開學(xué)季內(nèi)經(jīng)銷該產(chǎn)品的利潤(rùn).

1)根據(jù)直方圖估計(jì)這個(gè)開學(xué)季內(nèi)市場(chǎng)需求量和中位數(shù);

2)將表示為的函數(shù);

3)根據(jù)直方圖估計(jì)利潤(rùn)不少于4800元的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),該函數(shù)圖像過點(diǎn),與點(diǎn)相鄰函數(shù)圖像上的一個(gè)最高點(diǎn)為

(1)求該函數(shù)的解析式;

(2)求函數(shù)在區(qū)間上的最值及其對(duì)應(yīng)的自變量的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)有獎(jiǎng)銷售中,購(gòu)滿100元商品得1張獎(jiǎng)券,多購(gòu)多得,1000張獎(jiǎng)券為一個(gè)開獎(jiǎng)單位,設(shè)特等獎(jiǎng)1個(gè),一等獎(jiǎng)10個(gè),二等獎(jiǎng)50個(gè).設(shè)1張獎(jiǎng)券中特等獎(jiǎng)、一等獎(jiǎng)、二等獎(jiǎng)的事件分別為A、B、C,求:

1PA,PB,PC;

21張獎(jiǎng)券的中獎(jiǎng)概率;

31張獎(jiǎng)券不中特等獎(jiǎng)且不中一等獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司今年年初用25萬元引進(jìn)一種新的設(shè)備,投入設(shè)備后每年收益為21萬元.該公司第年需要付出設(shè)備的維修和工人工資等費(fèi)用的信息如下圖 .

(1

(2引進(jìn)這種設(shè)備后,第幾年后該公司開始獲利;

(3這種設(shè)備使用多少年,該公司的年平均獲利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列是等比數(shù)列, 為數(shù)列的前項(xiàng)和,且

(1)求數(shù)列的通項(xiàng)公式.

(2)設(shè)為遞增數(shù)列.若求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司過去五個(gè)月的廣告費(fèi)支出與銷售額(單位:萬元)之間有下列對(duì)應(yīng)數(shù)據(jù):


2

4

5

6

8



40

60

50

70

工作人員不慎將表格中的第一個(gè)數(shù)據(jù)丟失.已知對(duì)呈線性相關(guān)關(guān)系,且回歸方程為,則下列說法:銷售額與廣告費(fèi)支出正相關(guān);丟失的數(shù)據(jù)(表中處)為30;該公司廣告費(fèi)支出每增加1萬元,銷售額一定增加萬元;若該公司下月廣告投入8萬元,則銷售

額為70萬元.其中,正確說法有( )

A1個(gè) B2個(gè) C3個(gè) D4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解某班學(xué)生的會(huì)考合格率,要從該班70人中選30人進(jìn)行考察分析,則70人的會(huì)考成績(jī)的全體是______,樣本是______,樣本量是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案