已知:復數(shù),,且,其中為△ABC的內(nèi)角,、為角、、所對的邊.

(Ⅰ)求角的大;

(Ⅱ) 若,求△ABC的面積.

 

 

 

 

 

 

 

【答案】

 解:(Ⅰ)∵   ∴----①,----② 

由①得------③………………………………2分

在△ABC中,由正弦定理得=,設

,代入③得

 

   ∴  ∴,∵  ∴……………5分

(Ⅱ) ∵,由余弦定理得,--④

 由②得-⑤  由④⑤得.

=. ……………………………10分

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z1=m+ni(m,n∈R),z=x+yi(x,y∈R),z2=2+4i且z=
.
z1
i-z2

(1)若復數(shù)z1對應的點M(m,n)在曲線y=-
1
2
(x+3)2-1
上運動,求復數(shù)z所對應的點P(x,y)的軌跡方程;
(2)將(1)中的軌跡上每一點按向量
a
=(
3
2
,1)
方向平移
13
2
個單位,得到新的軌跡C,求C的軌跡方程;
(3)過軌跡C上任意一點A(異于頂點)作其切線,交y軸于點B,求證:以線段AB為直徑的圓恒過一定點,并求出此定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年上海市上海中學高三數(shù)學綜合練習試卷(7)(解析版) 題型:解答題

已知復數(shù)z1=m+ni(m,n∈R),z=x+yi(x,y∈R),z2=2+4i且
(1)若復數(shù)z1對應的點M(m,n)在曲線上運動,求復數(shù)z所對應的點P(x,y)的軌跡方程;
(2)將(1)中的軌跡上每一點按向量方向平移個單位,得到新的軌跡C,求C的軌跡方程;
(3)過軌跡C上任意一點A(異于頂點)作其切線,交y軸于點B,求證:以線段AB為直徑的圓恒過一定點,并求出此定點的坐標.

查看答案和解析>>

同步練習冊答案