已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),對(duì)稱軸為軸,焦點(diǎn)為,拋物線上一點(diǎn)的橫坐標(biāo)為2,且.
(1)求拋物線的方程;
(2)過點(diǎn)作直線交拋物線于,兩點(diǎn),求證: .
(1)(2)詳見解析.

試題分析:(1)可利用待定系數(shù)法設(shè)拋物線方程為求解;
(2)因?yàn)槭侵本與圓錐曲線的相交問,可以設(shè)直線方程(斜率不存在時(shí)單獨(dú)討論),然后聯(lián)立拋物線方程和直線方程運(yùn)用韋達(dá)定理結(jié)合條件來求解.
試題解析:解:(1)由題設(shè)拋物線的方程為:,
則點(diǎn)的坐標(biāo)為,點(diǎn)的一個(gè)坐標(biāo)為,2分
,∴,4分
,∴,∴.6分
(2)設(shè)、兩點(diǎn)坐標(biāo)分別為,
法一:因?yàn)橹本當(dāng)的斜率不為0,設(shè)直線當(dāng)的方程為
方程組,

因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240340532471135.png" style="vertical-align:middle;" />
所以
=0,
所以.
法二:①當(dāng)的斜率不存在時(shí),的方程為,此時(shí)
所以.       8分
當(dāng)的斜率存在時(shí),設(shè)的方程為
方程組
所以10分
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240340532471135.png" style="vertical-align:middle;" />
所以
所以.
由①②得.12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓)的焦距為,且過點(diǎn)(,),右焦點(diǎn)為.設(shè)上的兩個(gè)動(dòng)點(diǎn),線段的中點(diǎn)的橫坐標(biāo)為,線段的中垂線交橢圓,兩點(diǎn).

(1)求橢圓的方程;
(2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,左右焦點(diǎn)分別為,且.
(1)求橢圓C的方程;
(2)過點(diǎn)的直線與橢圓相交于兩點(diǎn),且,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓與橢圓中心在原點(diǎn),焦點(diǎn)均在軸上,且離心率相同.橢圓的長軸長為,且橢圓的左準(zhǔn)線被橢圓截得的線段長為,已知點(diǎn)是橢圓上的一個(gè)動(dòng)點(diǎn).

⑴求橢圓與橢圓的方程;
⑵設(shè)點(diǎn)為橢圓的左頂點(diǎn),點(diǎn)為橢圓的下頂點(diǎn),若直線剛好平分,求點(diǎn)的坐標(biāo);
⑶若點(diǎn)在橢圓上,點(diǎn)滿足,則直線與直線的斜率之積是否為定值?若是,求出該定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的左、右焦點(diǎn)分別為,離心率為,P是橢圓上一點(diǎn),且面積的最大值等于2.
(1)求橢圓的方程;
(2)直線y=2上是否存在點(diǎn)Q,使得從該點(diǎn)向橢圓所引的兩條切線相互垂直?若存在,求點(diǎn)Q的坐標(biāo);若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓兩焦點(diǎn)坐標(biāo)分別為,,一個(gè)頂點(diǎn)為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)是否存在斜率為的直線,使直線與橢圓交于不同的兩點(diǎn),滿足. 若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C=1(a>b>0)的兩個(gè)焦點(diǎn)F1,F2和上下兩個(gè)頂點(diǎn)B1,B2是一個(gè)邊長為2且∠F1B1F2為60°的菱形的四個(gè)頂點(diǎn).
(1)求橢圓C的方程;
(2)過右焦點(diǎn)F2的斜率為k(k≠0)的直線l與橢圓C相交于E、F兩點(diǎn),A為橢圓的右頂點(diǎn),直線AE,AF分別交直線x=3于點(diǎn)M,N,線段MN的中點(diǎn)為P,記直線PF2的斜率為k′,求證: k·k′為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若一個(gè)動(dòng)點(diǎn)到兩個(gè)定點(diǎn)的距離之差的絕對(duì)值等于8,則動(dòng)點(diǎn)M的軌跡方程為 (    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn)是雙曲線右支上一點(diǎn),是雙曲線的左焦點(diǎn),且雙曲線的一條漸近線恰是線段的中垂線,則該雙曲線的離心率是(      )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案