給出下列命題:
①如果,是兩條直線,且//,那么平行于經(jīng)過(guò)的任何平面;
②如果平面不垂直于平面,那么平面內(nèi)一定不存在直線垂直于平面;
③若直線,是異面直線,直線,是異面直線,則直線也是異面直線;
④已知平面⊥平面,且,若,則⊥平面
⑤已知直線⊥平面,直線在平面內(nèi),//,則.
其中正確命題的序號(hào)是     .
②⑤

試題分析:對(duì)于①如果,是兩條直線,且//,那么平行于經(jīng)過(guò)的任何平面,可能在同一平面內(nèi),錯(cuò)誤。
對(duì)于②如果平面不垂直于平面,那么平面內(nèi)一定不存在直線垂直于平面;根據(jù)逆否命題的判定可知成立。
對(duì)于③若直線是異面直線,直線,是異面直線,則直線,也是異面直線;可能平行或者相交,錯(cuò)誤
對(duì)于④已知平面⊥平面,且,若,則⊥平面;可能線面是斜交,錯(cuò)誤。
對(duì)于⑤已知直線⊥平面,直線在平面內(nèi),//,則.成立,故填寫(xiě)②⑤
點(diǎn)評(píng):解決該試題的關(guān)鍵是對(duì)于空間中線面以及面面位置關(guān)系的理解和運(yùn)用,屬于中檔題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)
如圖,在四棱錐中,底面,,,的中點(diǎn).

(Ⅰ)證明;
(Ⅱ)證明平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知兩個(gè)不同的平面α,和兩條不重合的直線m,n,則下列四種說(shuō)法正確的為(    )
A.若m∥n,nα,則m∥α
B.若m⊥n,m⊥α,則n∥α
C.若mα,n,α∥,則m,n為異面直線
D.若α⊥,m⊥α,n⊥,則m⊥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)如圖,在多面體ABCDE中,,,是邊長(zhǎng)為2的等邊三角形,,CD與平面ABDE所成角的正弦值為.

(1)在線段DC上是否存在一點(diǎn)F,使得,若存在,求線段DF的長(zhǎng)度,若不存在,說(shuō)明理由;
(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知四棱錐的底面為菱形,且,
,的中點(diǎn).

(Ⅰ)求證:平面
(Ⅱ)求點(diǎn)到面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分10分)
如圖,在棱長(zhǎng)為3的正方體中,.

⑴求兩條異面直線所成角的余弦值;
⑵求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知是兩條不同的直線,是兩個(gè)不重合的平面,給出下列命題:
①若,則           ②若 ;      
③若 ;   ④若;   
其中正確命題的個(gè)數(shù)為                   (      )                                                  
A.1個(gè)    B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在三棱錐P-ABC中,PA⊥平面ABC,∠BAC=90°,D、E、F分別是棱AB、BC、CP的中點(diǎn),AB=AC=1,PA=2,則直線PA與平面DEF所成角的正弦值為(  )
A.              B.             C.             D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
如圖,在三棱錐P-ABC中,底面△ABC為等邊三角形,∠APC=90°,PB=AC=2PA=4,O為AC的中點(diǎn)。

(Ⅰ)求證:BO⊥PA;
(Ⅱ)判斷在線段AC上是否存在點(diǎn)Q(與點(diǎn)O不重合),使得△PQB為直角三角形?若存在,試找出一個(gè)點(diǎn)Q,并求的值;若不存在,說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案