設(shè)等差數(shù)列{an}的前n項和為Sn,且S4=-62,S6=-75,求:
(1){an}的通項公式an及其前n項和Sn
(2)|a1|+|a2|+|a3|+…+|a14|.
(1)n2n(2)147
(1)設(shè)等差數(shù)列首項為a1,公差為d,依題意得解得a1=-20,d=3.
an=a1+(n-1)d=3n-23,Snn2n.
(2)∵a1=-20,d=3,
∴{an}的項隨著n的增大而增大.
設(shè)ak≤0且ak+1≥0得3k-23≤0,且3(k+1)-23≥0,
≤k≤(k∈Z),故k=7.
即當(dāng)n≤7時,an<0;當(dāng)n≥8時,an>0.
∴|a1|+|a2|+|a3|+…+|a14|=-(a1+a2+…+a7)+(a8+a9+…+a14)=S14-2S7=147.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知公差不為0的等差數(shù)列{an}滿足a1,a3,a9成等比數(shù)列,Sn為數(shù)列{an}的前n項和,則=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an}為等差數(shù)列,若<-1,且它們的前n項和Sn有最大值,求使得Sn<0的n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等差數(shù)列{an}的前n項和為Sn,n∈N*,且滿足a2+a4=14,S7=70.
(1)求數(shù)列{an}的通項公式;
(2)若bn,則數(shù)列{bn}的最小項是第幾項,并求該項的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)數(shù)列{an}滿足a1=2,a2+a4=8,且對任意n∈N*,函數(shù)f(x)=(an-an+1+an+2)x+an+1cos x-an+2sin x滿足f′=0.
(1)求數(shù)列{an}的通項公式;
(2)若bn=2(an+),求數(shù)列{bn}的前n項和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)是定義在R上不恒為零的函數(shù),且對于任意實數(shù)a,b∈R,滿足:f(a·b)=af(b)+bf(a),f(2)=2,an=(n∈N*),bn=(n∈N*).
考察下列結(jié)論:
①f(0)=f(1);②f(x)為偶函數(shù);
③數(shù)列{an}為等比數(shù)列;
④數(shù)列{bn}為等差數(shù)列.
其中正確的結(jié)論共有(  )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)a>0,若an且數(shù)列{an}是遞增數(shù)列,則實數(shù)a的范圍是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在等差數(shù)列{an}中,a1=2,d=3,則a6=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知數(shù)列是等比數(shù)列,數(shù)列是等差數(shù)列,則的值為     .

查看答案和解析>>

同步練習(xí)冊答案