如圖,棱柱的側(cè)面是菱形,.
(Ⅰ)證明:平面平面;
(Ⅱ)設(shè)是上的點(diǎn),且平面,求的值.
(Ⅰ)見解析;(Ⅱ)1.
解析試題分析:(Ⅰ)因?yàn)閭?cè)面BCC1B1是菱形,所以,又已
,
又平面A1BC1,又平面AB1C ,所以平面平面A1BC1 .
(Ⅱ)設(shè)BC1交B1C于點(diǎn)E,連結(jié)DE, 則DE是平面A1BC1與平面B1CD的交線,因?yàn)锳1B//平面B1CD,所以A1B//DE.又E是BC1的中點(diǎn),所以D為A1C1的中點(diǎn).即A1D:DC1=1.
考點(diǎn):面面垂直的判定定理;線面平行的判定定理;線面平行的性質(zhì)定理。
點(diǎn)評(píng):題考查平面與平面垂直的判定,直線與平面平行的性質(zhì),考查空間想象能力,邏輯思維能力,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題12分)如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,E, F分別是棱BC,CC1上的點(diǎn),CF="AB=2CE," AB:AD:AA1=1:2:4.
(Ⅰ)求異面直線EF與A1D所成角的余弦值;
(Ⅱ)證明AF⊥平面A1ED;
(Ⅲ)求二面角A1-ED-F的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知正方形ABCD的邊長(zhǎng)為1,F(xiàn)D⊥平面ABCD,EB⊥平面ABCD,F(xiàn)D=BE=1,M為BC邊上的動(dòng)點(diǎn).試探究點(diǎn)M的位置,使F—AE—M為直二面角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐中,⊥底面,底面為梯形,,,,點(diǎn)在棱上,且.
(1)求證:平面⊥平面;
(2)求平面和平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,長(zhǎng)方體AC1中,AB=2,BC=AA1=1.E、F、G分別為棱DD1、D1C1、BC的中點(diǎn).
(1)求證:平面平面;
(2)在底面A1D1上有一個(gè)靠近D1的四等分點(diǎn)H,求證: EH∥平面FGB1;
(3)求四面體EFGB1的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)
(本題滿分12分)
如圖,已知三棱錐的側(cè)棱兩兩垂直,
且,,是的中點(diǎn)。
(1)求異面直線與所成角的余弦值;
(2)求直線BE和平面的所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知四棱錐的底面是正方形,⊥底面,且,點(diǎn)、分別為側(cè)棱、的中點(diǎn)
(1)求證:∥平面;
(2)求證:⊥平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)如圖,已知三棱錐的側(cè)棱兩兩垂直,且,,是的中點(diǎn).
(Ⅰ)求異面直線與所成角的余弦值;
(Ⅱ)BE和平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在正方體中,為底面的中心,是的中點(diǎn),設(shè)是上的中點(diǎn),求證:(1);
(2)平面∥平面.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com