如圖,在三棱柱中,側(cè)面為菱形, 且,,是的中點.
(1)求證:平面平面;
(2)求證:∥平面.
(1)詳見解析,(2)詳見解析.
解析試題分析:(1)證明面面垂直,關(guān)鍵找出線面垂直.因為側(cè)面為菱形, 且,所以△為正三角形,因而有.又,是的中點,所以有,這樣就可得到平面,進而可證平面平面.(2)證明線面平行,關(guān)鍵找出線線平行. 條件“是的中點”,提示找中位線.取中點,就可得∥,利用線面平行判斷定理即可.解決此類問題,需注意寫全定理成立的所有條件,不可省略.
試題解析:(1)證明:∵ 為菱形,且,
∴△為正三角形. 2分
是的中點,∴.
∵,是的中點,∴ . 4分
,∴平面. 6分
∵平面,∴平面平面. 8分
(2)證明:連結(jié),設(shè),連結(jié).
∵三棱柱的側(cè)面是平行四邊形,∴為中點. 10分
在△中,又∵是的中點,∴∥. 12分
∵平面,平面,∴ ∥平面. 14分
考點:面面垂直判定定理,線面平行判定定理
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知四棱錐,底面為菱形,
平面,,分別是的中點.
(1)證明:;
(2)若為上的動點,與平面所成最大角的正切值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖在四棱錐中,底面是菱形,,平面平面,,為的中點,是棱上一點,且.
(1)求證:平面;
(2)證明:∥平面;
(3)求二面角的度數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在棱長為2的正方體ABCD-A1B1C1D1中,E為棱CC1的中點。
(1)求證:BD⊥AE;
(2)求點A到平面BDE的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知四棱錐P-ABCD,底面ABCD是,邊長為的菱形,又,且PD=CD,點M、N分別是棱AD、PC的中點.
(1)證明:DN//平面PMB;
(2)證明:平面PMB平面PAD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在等腰直角三角形中, =900 ,="6," 分別是,上的點, 為的中點.將沿折起,得到如圖所示的四棱椎,其中
(1)證明:;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,幾何體EABCD是四棱錐,△ABD為正三角形,CB=CD,EC⊥BD.
(1)求證:BE=DE;
(2)若∠BCD=120°,M為線段AE的中點,求證:DM∥平面BEC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱錐SABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,過A作AF⊥SB,垂足為F,點E、G分別是棱SA、
SC的中點.求證:
(1)平面EFG∥平面ABC;
(2)BC⊥SA.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知四棱錐P-ABCD中,底面ABCD為正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC.
(1)求證:BE∥平面PDA;
(2)若N為線段PB的中點,求證:NE⊥平面PDB.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com