已知函數(shù)y=(2m+1)x+m-3
(1)若函數(shù)圖象經(jīng)過原點(diǎn),求m的值
(2)若這個(gè)函數(shù)是一次函數(shù),且y隨著x的增大而減小,求m的取值范圍.
考點(diǎn):一次函數(shù)的性質(zhì)與圖象
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由函數(shù)圖象經(jīng)過原點(diǎn),得到m-3=0,解出即可;(2)若這個(gè)函數(shù)是一次函數(shù),且y隨著x的增大而減小,得不等式2m+1<0,解出即可.
解答: 解:(1)∵函數(shù)圖象經(jīng)過原點(diǎn),
∴m-3=0,解得:m=3.
(2)若這個(gè)函數(shù)是一次函數(shù),且y隨著x的增大而減小,
∴2m+1<0,解得:m<-
1
2
點(diǎn)評(píng):本題考查了一次函數(shù)的性質(zhì),牢記圖象及性質(zhì)是解題的關(guān)鍵,本題屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)在(-∞,0)上單調(diào)遞增,且f(2)=0,則不等式(x-1)•f(x-1)>0的解集是(  )
A、(-1,3)
B、(-∞-1)
C、(-∞-1)∪(3,+∞)
D、(-1,1)∪(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
1
2
lnx-
1
2e2
x(e為自然對(duì)數(shù)的底),g(x)=x-
a
x
(a>0).若對(duì)任意x1,x2∈[2,2e2]都有g(shù)(x1)≥f(x2),則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y(x)=cosx•sinx(x+
π
3
)-
3
cos2x+
3
4
,x∈[-
π
4
,
π
4
)

(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,圓C的參數(shù)方程
x=1+cosφ
y=sinφ
為參數(shù)).以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求圓C的極坐標(biāo)方程;
(Ⅱ)直線l的極坐標(biāo)方程是2ρsin(θ+
π
3
)=3
3
,射線OM:θ=
π
3
與圓C的交點(diǎn)為O、P,與直線l的交點(diǎn)為Q,求線段PQ的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-
1
2
ax2
+2x+1(a∈R).
(Ⅰ)若函數(shù)f(x)在R上單調(diào)遞增,求a的取值范圍;
(Ⅱ)在(Ⅰ)的條件下,設(shè)函數(shù)g(x)=ex(ex+a),x∈[0,ln2],求g(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
16
=1,離心率為
3
5

(Ⅰ)求橢圓的方程;
(Ⅱ)過a>4的橢圓的右焦點(diǎn)F任作一條斜率為k(k≠0)的直線交橢圓于A,B兩點(diǎn),問在F右側(cè)是否存在一點(diǎn)D(m,0),連AD、BD分別交直線x=
25
3
于M,N兩點(diǎn),且以MN為直徑的圓恰好過F,若存在,求m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)對(duì)任意實(shí)數(shù)x,y恒有f(x+y)=f(x)+f(y),且當(dāng)x>0時(shí),f(x)<0,又f(1)=-2
(1)判斷f(x)的奇偶性;
(2)判斷f(x)在R上的單調(diào)性;
(3)求f(x)在區(qū)間[-3,3]上的值域;
(4)若任意x∈R,不等式f(ax2)-2f(x)<f(x)+4恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)為單調(diào)函數(shù),且對(duì)任意x∈R,恒有f(f(x)-2x)=-
1
2
,則函數(shù)f(x)的零點(diǎn)是( 。
A、-1B、0C、1D、2

查看答案和解析>>

同步練習(xí)冊(cè)答案